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Abstract –  Although forecasts of future events are simply 
uncertain, predicting is one of the most important aspects 
of future planning. Accurate rice price predictions tend 
to be helpful for wholesalers, producers, and farmers to 
develop plans and strategies to reduce the risks that can be 
faced. Structural time series models are the most plausible 
alternative for long-term forecasting. This paper proposes 
an alternate method for modeling average rice prices 
using structural time series along with Bayesian parameter 
inference via Hamiltonian Monte Carlo (HMC). The model 
has been built using the monthly average wholesale rice 
price from January 2010 to December 2019. For working 
out both structural time series and HMC, the TensorFlow 
Probability Library was used. Linear trend, seasonal, 
and autoregressive components were combined as an 
additive model to the structural time model. The proposed 
Hamiltonian parameter produces an optimal acceptance 
rate. Their trace plot was used to diagnose the convergence 
of their chain. One of the predictive accuracy of models was 
assessed using the mean absolute percent error (MAPE). 
Through both single and multiple chain iterations, the 
prediction accuracy of a year-ahead is highly accurate, 
with MAPE less than 2%. Long-term iteration draws during 
Hamiltonian Monte Carlo should be considered when 
attempting to achieve more convergence.
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I. INTRODUCTION

Indonesia is the greatest rice-consuming nation in 
Southeast Asia because of its culture, which views rice as 
a necessary daily staple (Aryani, 2021) market operation 

cannot influence consumer rice prices at the national level 
because this policy is incidental. The rice import variable 
will have an effect on reducing consumer rice prices at lag 
6, meaning that the decline in rice prices will be seen in the 
next six months. Mapping based on Tinbergen framework, 
exsogenous variables consist of: policy instruments (Rice 
HPP, Market Operation, Rice Import. Among the main 
products that trigger inflation is rice. Essentially, the rice 
price is determined by various levels of supply and demand 
at any given moment. Rice prices often experience rapid 
fluctuations. The government conducts various rice price 
stability plans to ensure that rice prices benefit farmers and 
consumers. Although forecasts of future events are simply 
uncertain, predicting is one of main components of future 
planning. Predicting rice prices could help the government 
keep rice prices affordable for consumers and establish 
policies that enhance the lives of all people. Accurate 
prediction may be utilized by wholesalers, producers, and 
farmers to produce plans and strategies for selling rice 
supplies to reduce the threats that will be addressed.

 Studies on predicting rice prices have been widely 
conducted. The classical autoregressive integrated moving 
average (ARIMA) model has been conducted to predict 
rice price, and it is suitable to predict medium-quality 
rice price (Ohyver & Pudjihastuti, 2018). The ARIMA 
model was also found to be the most appropriate model to 
forecast rice prices on the farmer level, wholesale level, 
and international level (Anandyani et al., 2021; Fajari et 
al., 2021; Ramadhani et al., 2020) almost all Indonesians 
consume rice derived from rice. Therefore, it is very 
important to pay attention to the increase and decrease in 
the price of rice every month so that the price of rice can 
be maintained stable and does not burden the community. 
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This study aims to find the best forecasting model for the 
average rice price at the Indonesian wholesale or wholesale 
trade level for July 2020 to June 2021 using the SARIMA 
(Seasonal Autoregressive Integrated Moving Average. 
Other forecasting techniques have also been applied, such 
as Holt’s double exponential smoothing and Cheng’s fuzzy 
time series method (Sulpaiyah et al., 2022). The application 
of the backpropagation method for rice price prediction 
also works well (Nafi’iyah & Khudori, 2022; Natasya et al., 
2021). A study using the least squares method gave small 
error (Shidiq et al., 2022). Past studies relied on short-
term methods resulting the forecasting should be applied 
regularly. According to Ohyver and Pudjihastuti (2018), 
we should develop a reliable forecasting approach. The 
prediction using the recurrent neural network long short 
term memory (RNN-LSTM) shows that this method can 
be used to predict the price of rice at the wholesale level 
quite well (Sanjaya & Heksaputra, 2020). However, they 
recommend forecasting with other long-term approaches 
and compare them with theirs.

 The structural time series models are family 
of probability models for time series that includes and 
generalizes many standard time-series modeling ideas, 
including autoregressive processes, moving averages, local 
linear trends, seasonality, regression, and other time series 
potentially related to the series of interest. Structural time 
series models have been referred to as Bayesian structural 
time series (BSTS). Both classic ARIMA and BSTS are 
equally effective for short-term forecasting, while BSTS 
with local levels is the most plausible alternative for long-
term forecasting (Almarashi & Khan, 2020) the same 
approach can be applied to complex engineering process 
involving lead times. Results from the current study were 
compared with classical Autoregressive Integrated\n 
Moving Average (ARIMA. The BSTS model in terms of 
oil price can predict prices with significant precision which 
challenges forecasting using classic statistical approaches. 
Predicting prices is more complex and difficult to model 
since price movements are non-linear, unstable, and 
extremely volatile. BSTS have proven to be exceptionally 
successful at forecasting nonlinear and complex time series 
(AL-Moders & Kadhim, 2021). The BSTS models, in brief, 
are stochastic state-space models that can separately explore 
the trend, seasonality, and regression components (Feroze, 
2020).

As an alternative approach, this study proposed 
modeling structural time series to predict wholesale 
rice prices using Hamiltonian Monte Carlo as Bayesian 
parameter inference. Hamiltonian Monte Carlo (HMC) is 
a Markov chain Monte Carlo (MCMC) method that uses 
the derivatives of the density function being sampled 
to generate efficient transitions spanning the posterior. 
MCMC methods are regarded as the standard of Bayesian 
inference, given appropriate conditions and with an infinite 
number of draws, they yield samples from the real posterior 
distribution. HMC proposes samples using gradients of 
the model’s log-density function, allowing it to utilize 
posterior geometry. It performs the Metropolis acceptance 
step after running an approximation Hamiltonian dynamics 
simulation based on numerical integration. The advantage 

of this approach is that this ratio may be close to 100%, far 
higher than the typical optimal acceptance ratios for other 
MCMC algorithms, which are typically between 20% and 
60% (Kramer et al., 2014). 

II. METHODS

We gathered the data from Central Bureau of 
Statistics Indonesia publications. Data in the form of the 
monthly average rice price, i.e., the wholesale price of 
rice per kilogram (in rupiah units). The study requires no 
ethical approval, considering we used prior information. 
Nowcasting was described as forecasting the next year 
(to 2020/12) using a time series from 2010/01 to 2019/12. 
Nowcasting mistakes were interpreted as variations in 
measured and nowcast data. This study following proposed 
research steps as displayed in Figure 1.

Figure 1. The research steps

Initially, time-series data were decomposed using 
naive decomposition. Decomposition methods were 
favored as additive models. The decomposition findings 
are generated by first predicting the trend in the data using 
a convolution filter. The trend is then removed from the 
series, and the average of this de-trended series for each 
period is the returning seasonal component.

The Bayesian technique creates analytical models 
based on prior experience and data (likelihood function). 
The prior distribution can include expert opinion, and the 
likelihood function takes into relevant patent data about 
current patterns. The prior information is paired with the 
likelihood function to update the information, resulting in the 
posterior distribution, a final Bayesian model. The analytical 
computation of the Bayesian posterior distribution, on the 
other hand, is highly complex. As a result, the numerical 
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computations are performed using Markov Chain Monte 
Carlo (MCMC). 

The posterior predictive density is a joint distribution 
over all data points, and the posterior distribution of the 
model parameters are estimated using Hamiltonian Monte 
Carlo (HMC) with a sample draw of 1000. For more details 
about HMC, see explanation by Neal (2011), Betancourt 
(2017) and Cordeiro et al. (2022). It is computationally 
demanding and relatively tunable. Given samples from 
the posterior over parameters for the number of steps to 
anticipate timesteps, a predictive distribution over future 
observations are generated. Accuracy measures Mean 
Absolute Error (MAE), Root Mean Squared Error (RMSE), 
Mean Absolute Percent Error (MAPE) used as an indicator 
of the forecast accuracy. Tables and graphs are used to 
display the results. We put the structural time-series into 
action using TensorFlow Probability library for forecasting 
time series.

III. RESULTS AND DISCUSSION

There are three components in this time-series 
data decomposition: trend, seasonality, and noise. These 
components combine to form an observation. The observed 
rice price data in Figure 1 obviously shows that it increased 
over a period. However, it is hard to detect repeated behavior 
patterns every year. It should be clear upon inspection that 
this series contains both a long-term trend and monthly 
seasonal variation. 

The trend plot shows that the rice price has increased. 
The overall trend or the local linear trend model component 
in Figure 2 posits a level and slope, each evolving via a 
Gaussian random walk. The seasonal plot shows that rice 
prices go down at the beginning of each year and reach their 
peak towards the end. We could see that rice prices have 
seasonal patterns. A seasonal effect model component posits 
a fixed set of recurring events, each of which is active for 
a fixed number of timesteps and, while active, contributes 
a different effect to the time series. The result represents 
regular, recurring monthly patterns.

Figure 2. Time Series Decomposition

The third component is residual noise. It shows 
random and irregular data points that cannot be attributed to 
either trends or seasonality. The residuals show a period of 
high variability in the early period between 2011 and 2012. 
A noisy linear combination at each timestep is constructed 
as an autoregressive (AR) model component. All the time 
series components are composed as an additive model. 
This model inherits the parameters (with priors) of its 
components and adds an observation noise scale parameter 
governing the level of noise in the rice price time series.

Parameter inference for this structural time series 
model starts with a special initial set of parameters. The 
Hamiltonian function is simply the negative log joint 
distribution of the rice price time series model and is used 
to calculate Hamiltonian trajectories according to the 
differential equations as defined in Kramer et al. (2014). 
For a given number of iterations with a single chain, a 
new momentum vector is sampled, and the current value 
of the parameter is updated using the leapfrog integrator 
with discretization time and the number of leapfrog steps 
according to the Hamiltonian dynamics. The Hamiltonian 
dynamics proposed a new pair of parameters, as stored in 
Table I. It takes total CPU-times 2409 seconds and wall time 
1545 seconds using Colab’s notebook runtime environment.

Table I. Single Chain Parameter Inference 

Component Parameter
Posterior

Mean Standard 
Deviation

Observation noise scale 6.12 6.00

Linear trend
level scale 36.72 32.96

slope scale 24.62 17.96

Seasonal drift scale 3.14 4.19

AR
coefficient 0.88 0.19

level scale 62.70 28.55

We need to make sure that the HMC sampler explores 
the parameter space efficiently, i.e., doesn’t reject or accept 
too many proposals. Because of the heavier computation 
in computing the proposal, the optimal acceptance rate for 
HMC is higher, an acceptance rate of approximately 0.8 
is in general a good target (Gentle, 2009). The final state 
for parameter inference of the rice price structural time 
series has an acceptance rate of 0.961, a high acceptance 
probability. In other words, based on its acceptance rate, the 
set of proposed parameters is balanced and convergences to 
the desired distribution.

To diagnose the convergence of its chain, we 
should look at the trace plot in Figure 3. The graph for 
the observation noise scale, seasonal drift scale, and 
autoregressive coefficient parameter demonstrates good 
mixing behavior since it well explores the region with 
the highest density (bounded by the blue dotted line) and 
bounces from one point to another. It gradually converges 
to a steady distribution (the posterior). 
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Figure 3. Trace Plot for Single Chain

The linear trend parameter reveals slow mixing. It 
is requiring many more iterations to converge. On a linear 
trend, the level scale parameter tends to stay at one point 
for quite time, and it takes certain iterations to move to that 
point. Although the slope scale moves to a new location in 
each iteration, the jump is rather tiny, so it takes time to 
travel from one end of the distribution to the other. Multiple 
chains may aid in the diagnosis of convergence issues and 
allow us to generate samples using vectorization. 

Table II. Multiple Chain Parameter Inference 

Parameter
Posterior Mean

Chain 
[1]

Chain 
[2]

Chain 
[3]

Chain 
[4]

Mean
Total

Linear trend:
level scale 83.99 52.39 64.33 70.79 67.88

slope scale 21.64 25.51 21.61 23.68 23.11

Seasonal:
drift scale 3.22 3.28 3.62 3.04 3.29

AR:
coefficient 0.68 0.85 0.74 0.69 0.74

level scale 14.07 48.49 32.75 26.45 30.44

Acceptance rate 0.848 0.886 0.955 0.800 0.872

The posterior mean from the multiple chain of 
HMC demonstration are presented on Table II. It takes 
total CPU-times 2801 seconds and wall time 1740 seconds 
using Colab’s notebook runtime environment. Their mean 
proposed parameters computation offered differ value for 
level scale parameter in linear trend and autoregressive 
component. As we discussed on single chain topic, there 
were poor mixing trace for them. 

The multiple chain trace plot in Figure 4 was built 
only for scalar parameters. The observation noise scale 
trace plot shows that all the chain mixing well, form similar 
density and explores the center region of density. Similar 
trace plot case applied for slope scale of linear trend and drift 
scale of seasonal component. Their trace plot tells us the 
chain is mixing well. The chains have reached stationarity 
because the distribution of points is not changing as the 
chain progresses. The stationarity recognized from their 
trace plot had relatively constant mean and variance. This 
chain traverses its posterior space rapidly, and it can jump 
from one remote region of the posterior to another in 
relatively few steps.

The density of the linear trend component’s level 
scale parameter results in a bimodal distribution form. 
It indicated poor mixing for its parameter, resulting in a 
distinct value for each demonstration. As well as for the 
autoregressive level scale. This finding suggests that extra 
actions will be required to bring those parameters into 
alignment. More strategies are required to improve its 
convergence. This style of trace plot is generally associated 
with strong sample autocorrelation. We need to run the 
chain for much longer to get a few thousand independent 
samples. As the convergence issue worsens, multiple chain 
acceptance rates for proposals decline. This acceptance rate, 
however, is still regarded as an optimal or good target.
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Figure 4. Trace Plot for Multiple Chain

The posterior marginal distributions on the process 
modeled are mapping by each component of rice price 
structural time series. Using the component distributions, 
we can visualize the uncertainty for each component as 
displayed on Figure 5.

Figure 5. Component Distribution

Table III. Nowcasting Result 

Timestamp Actual
Nowcasting

Single-Chain Multiple-Chain

Jan-2020 12342.74 12316.69 12317.76

Feb-2020 12355.15 12314.37 12315.21

Mar-2020 12368.00 12212.69 12214.56

Apr-2020 12382.10 12002.51 12005.62

May-2020 12293.03 11929.98 11934.60

Jun-2020 12223.98 11943.47 11949.48

Jul-2020 12212.63 11998.47 12005.85

Augt-2020 12212.07 12021.10 12029.78

Sep-2020 12188.86 12026.19 12036.40

Oct-2020 12186.97 12040.69 12052.34

Nov-2020 12178.62 12075.90 12088.94

Dec-2020 12184.52 12171.96 12186.18

Accuracy

MAPE 1.61% 1.56%

MAE 197.88 191.49

RMSE 228.91 222.84
 

Rice prices are expected to rise from the beginning 
of the year until February 2020, according to the predicted 
figures indicated in Table III and Figure 6. The average 
price of rice then fell to its lowest point in May 2020, 
before rising again. The effect of seasonal components in 
the time series model causes fluctuations in the average rice 
price prediction. We can see in Figure 6 that the nowcast 
uncertainty of shading within 2 standard deviations 
increases over time, as the linear trend model becomes 
less confident in its extrapolation of the slope. The mean 
forecast combines the seasonal variation with a linear 
extrapolation of the existing trend, which appears to slightly 
underestimate the accelerating growth in rice prices, but the 
true values are still within the 95% predictive interval.

Figure 6. Rice Price Nowcast

On average, our nowcast is less than 2% off the 
actual average rice price, which is commonly considered 
to be excellent value. In this study, the average difference 
between predictions and actual is 191.49, and the weighted 
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average error is 222.84, which is probably a fair value given 
the average real rice price of roughly Rp. 12000.

Compared to Sanjaya and Heksaputra (2020), 
the model evaluation give a lower value then theirs. It 
produces smaller RMSE. As explained, we face obstacles 
to making the parameter convergence even after multiple 
chain updated. However multiple chain trials increase the 
prediction accuracy.

IV. CONCLUSION

We have composed linear trend, seasonal, and 
autoregressive components as an additive structural time 
series model for the monthly average rice price at the 
wholesale level using the TensorFlow Probability library 
for Python. We demonstrated that the Bayesian inference 
parameter via HMC proposed a set parameter with an 
optimal acceptance rate. The findings of the study show 
that the forecasting accuracy of this model offers great 
value. This study has some limitations as well. Due to the 
convergence issue, the acceptance rate reduces, and the 
posterior mean of the level scale parameter for the linear 
trend and autoregressive component jumps from one point 
to another as the chain progresses. 

For future research, we should consider running the 
HMC for much longer to reach a stationary distribution for 
this parameter. Local level component could be considered 
adding into additive model component cause its more 
plausible for long-term prediction. This proposed approach 
is computationally demanding, using such powerful device 
would be helpful.
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