
Copyright © 2023

e-ISSN: 2686-2573
DOI: 10.21512/emacsjournal.v5i3.9697

129

 JURNAL EMACS

(Engineering, MAthematics and Computer Science) Vol.5 No.3 September 2023: 129-135

Relay Driver Based on Arduino UNO to Bridge the
Gap of The Digital Output Voltage of The Node

MCU ESP32

Yulianto
Computer Science Department, School of Computer Science,

Bina Nusantara University,
Jakarta, Indonesia 11480
yulianto003@binus.ac.id

*Correspondence: yulianto003@binus.ac.id

Abstract – The IoT could control the devices that need a
high current voltage to operate. The voltage control here
means that the IoT could give the command to turn on and
turn off the electric current by using a relay module. One of
the devices that are most frequently used in many research
projects is Node MCU ESP8266 and Node MCU ESP32.
Those microcontrollers work with the maximum supply is
3.3-volt direct current (DC). On the other hand, the relay
module commonly needs a voltage supply of 5-volt DC and
the relay needs to be controlled by a single transistor to
make a trig on. The relay will be active when the transistor’s
basis pin is grounded into the ground, so the relay will get the
current flow. However, the relay module which is controlled
using Node MCU could not work properly, caused Node
MCU only provides the digital out is 3-volt maximum from
its digital Input Output pins (I/O). Meanwhile, the driver
relay based on a single transistor needs a bias input amount
of 5 volts to make the relay module active well. If the bias
voltage doesn’t reach 5 volts or just 3.3 volts will make
the relay can’t switch on properly which can result in bad
contact. To overcome that problem this research proposed
the driver relay based on Arduino UNO. The novel of this
research is adding the Arduino UNO module between Node
MCU and the relay module which has task to bridge the
voltage difference between the output digital output ESP that
only maximum 3.3 volt converted by Arduino to be digital
output which can reach the voltage of 5 volt. The Arduino
JSON library was also involved to wrap the commands that
produced by Node MCU then deserialized on Arduino to
parse and convert to be digital output to control the relay
module.

Keywords: Relay Module; Arduino UNO; Node MCU;
 Arduino JSON

I. INTRODUCTION

The Internet of Things (IoT) concept has been
being an important key to supporting the digitalization
of smart-era technology (Nižetić et al., 2020). With the
implementation of IoT architecture, various electronic
hardware and systems software like physical devices, home
appliances, and other embedded systems that equipped with
sensor, network architecture, can communicate each other
to share and exchange information data (Ivanov et al., 2021)
(Zheng et al., 2021). The IoT allows for the seamless flow
of information between devices and enables the automation
of various processes, with the aim to increase efficiency
and improve daily life experiences. IoT is a framework
that could read the surrounding condition i.e., temperature,
humidity, lighting, etc. that are assisted by sensors (Ding
et al., 2020). The result of the reading sensor then can be
monitored by people anywhere (Rahman et al., 2020).
People also have the capability to control the environment
through their gadgets or other mobile technology (Xu et al.,
2020)(Shen et al., 2021). One of the existing components
in IoT framework that was used as couple between the low
current control to high current voltage control was relay
module. A relay module has several roles, i.e., to control
the high-voltage supply or high-current that flows on device
target-controlled (Parab & Prajapati, 2019).

Relay designed to isolate the low current electricity
area from that connected to microcontroller with high
current electricity or hot area that was used to supply other
electronic devices. Relay works mechanically. Although
the relay separates the control area between low voltage
or current with high voltage, the relay still needs a driver
component for a bridge between the core of the source

130 JURNAL EMACS (Engineering, MAthematics and Computer Science) Vol.5 No.3 September 2023: 129-135

signal with the low voltage area. The relay still needs an
additional driver component coupled between the digital
output pin of the microcontroller to the relay. The driver
relay model is needed because to activate the relay module,
the relay’s pin can’t connect directly to the microcontroller
because can damage the microcontroller because of the high
current flowing into the microcontroller’s pin.

The driver relay can be a single transistor, optocoupler
or integrated circuits (IC) (Uguru-Okorie et al., 2022). The
relay module that still uses a single transistor to drive the
relay switch is known to have a deficiency in activating
the relay. The bias voltage must be 5 volts. Whereas the
digital output of Node MCU ESP32 maximum is 3 volts.
The digital output of Node MCU ESP32 that only produces
3 volts to trigger the relay’s driver makes the relay can’t
activate properly. The example of the relay module with a
single transistor as a driver can be seen in Figure 2 and for
the detail of schematic diagram relay’s module from Figure
2 can be seen in Figure 3.

To overcome the problems related to the gaps in
voltage between Node MCU’s output that only can trigger
3 volts with the relay module that needs 5 volts for input
trigger, this study aims to propose a relay’s driver module
that consists of Hardware based on Arduino UNO and
software that involved a JSON Arduino library. The intent
of using Arduino UNO as a liaison between Node MCU
ESP32 and with relay module is to separate the task and
to change the digital output from Node MCU ESP32
originally only 3 volts to 5 volts. So, it can be said the Node
MCU ESP32 focuses on computing other task programs or
other advanced processing, and the Arduino UNO is used to
control the driver relay. All the command output from Node
MCU ESP32 is wrapped in JSON format and then delivered
to the Arduino UNO through serial communication. The
Arduino UNO then does the process of deserializing the
incoming command that is sent from Node MCU ESP32
to be converted as a digital output command to control the
relay module.

Research about home automation for controlling
devices remotely or wirelessly to help elderly people,
disabled people, and for efficiency of time has been
conducted Amoran et al (Amoran et al., 2021). The home
automation system that has been proposed in the last study
can be controlled by the smartphone to turn on and off the
lamps. The control of lamps was done by a relay module.
The relay module that has been proposed is equipped with
Darlington IC ULN2003A as the driver module. A changed
manual switch with a relay module has also been conducted
by Perkasa et al (Perkasa et al., 2021)(Hermanu et al., 2022)
(Hassan et al., 2022), where the implementation of the
system is to make the switch room can operate on or off
automatically. The controlling switch using a relay also has
been done by Sun et al (Sun et al., 2021) where their research
aimed to minimize the spark that arises when switching in
mode on or off with paralyzed relay and MOSFET together.
The research on the implementation of relays for circuit
breakers has been done by Siu et al (Siu et al., 2020) where
the relay is used to control the direct current in a microgrid
system.

Although there are many studies that proposed a
specific component associated with Node MCU ESP32,
especially that used for separating between low voltage
with high voltage areas, the fact found that the research
focuses to connect 5 volts of relay module with a single
driver transistor to Node MCU ESP32 is still limited. It’s
because the power supply to work is different between the
relay module and Node MCU ESP32 will result in the relay
can’t working properly when the relay module is triggered
to activate.

On the previous research to overcome the voltage’s
gap between output Node MCU with relay module, the
utilization of relay module which has the same working
voltage with the Node MCU which is 3 volts has been
proposed by El-Sayed et al (El-Sayed et al., 2021). Inspired
by the several pieces of literature mentioned before in this
session, this research tries to keep using a relay module with
a voltage of 5 volts using the adding Arduino UNO module
as an additional driver, on the relay module.

II. METHODS

Node MCU ESP32-The Node MCU ESP32 is a
device microcontroller known to be used in many IoT
projects. This microcontroller has also been equipped
with 2.4 GHz Wi-Fi and Bluetooth standard wireless
communication. For example, the Node MCU ESP32 was
used in the temperature and monitoring project proposed
by Yahya et al (Yahya et al., 2020). Project related to
the monitoring of air quality in mesh protocol network
topology that has been conducted by Khan et al was also
utilize the Node MCU ESP32 (Khan et al., 2022). The
detailed specification for wireless communication in
Node MCU ESP32 is the Wi-Fi standard 802.11 n with a
maximum bandwidth of 150 Mbps attached. The Bluetooth
specification used is the Bluetooth low energy (BLE)
version 4.2 controller, with a maximum transmission power
for Bluetooth of +10 dBm. The sensitivity for the Bluetooth
receiver was -98 dBm.

Arduino JSON-JavaScript Object Notation that
abbreviated from JSON is known as a lightweight document
format for expressing the nature of data (Bourhis et al.,
2020). The JSON format consists of a key and value pair
(Liu et al., 2020), where the key is typed in the left part and
the value is typed in the right part (see Figure 1). Figure 1
is the example of JSON document which contains 4 keys
there are relay1, relay2, relay3, and relay 4, and on every
key paired with value. For example, key of relay1 assigned
with the value 1, relay2 assigned with value of 2 etc.

Figure 1. The example representation of the JSON format

Where the key refers to the name of the variable
and the value data can be a string, number, array, object,

131Relay Driver Based on Arduino UNO to Bridge the Gap of The Digital Output Voltage… (Yulianto)

etc. (Mironov et al., 2020)(Lee et al., 2021). Arduino
JSON is a library that can be used to connect and exchange
information data from the microcontroller to web service
or between other microcontroller boards through serial
protocol communication (Blanchon, n.d.). The Arduino
JSON library is a third-party library and must be manually
installed. Arduino JSON could wrap multiple keys or
variables and values together, which is called the operation
of serialization. On the opposite side the reverse operation
is used to extract information from the JSON format that
is known as deserializing JSON. Arduino JSON really
works on low-resource computation because this library
just needs less room of Random Access Memory (RAM)
and less central processing unit (CPU) cycles like small
microcontrollers like Arduino or other edge devices that
support wireless technology like ESP8266, ESP32, and so
on. Arduino JSON library can also be used for multipurpose
programming that can be implemented on the personal
computer (PC) with different types of operating systems
like Linux, MacOS, and Windows.

Relay-As shown in Figure 2, this is an example
of the 1-channel relay card. The module operates at a
low level of 5-volt direct current (VDC). The relay can
be used to switch electricity with a maximum voltage of
250 volts alternating current (VAC) 10 amperes (A). if the
amperage is higher that 10 A for example up to 15A, then
the maximum voltage that allowed to flow through the relay
is 125 VAC maximum. The relay module shown in Figure
2 can also be used as a pair of switches for direct current
with a maximum current of 10A for 30 VDC. To control this
relay, an operating voltage of 5 VDC with a current of 15-20
milliamperes (mA) is required.

Figure 2. An example of low level 5V relay with a single driver NPN
transistor.

Figure 3. Schematic of a low-level 5-volt relay from Figure 2 that
simplified for the principle.

Figure 3 is a schematic diagram of Figure 2. The
relay module, shown as RELAY 1 in Figure 3, is equipped
with a negative-positive-negative (NPN) transistor, that is
written with code as T1. The single-channel relay module
is fitted with 3-pin connectors. The connector pins are
normally closed (NC), common (C), and normally open
(NO). The word “normally” means that if T1 is not biased,
the C pin on the relay will be connected to the NC pin on
the relay. Otherwise, if the base pin on T1 is biased, the
collector and emitter of T1 will conduct and make RELAY1

active, so the C pin of the relay will be connected to the NO
pin of the relay.

To control the relay module, the Node MCU ESP32
is connected directly to the relay module because the relay
will being weak mechanically to make contact between the
common (C) relay pin and the normally open (NO) relay
pin. The weak state of the relay contact is caused by the fact
that the 5V supply to the relay is insufficient to power it.
Insufficient current electricity to activate a relay is caused
by the pin base driver transistor, which controls the relay,
only receiving a maximum of 3 volts bias.

The base pin driver transistor is connected to the
Node MCU ESP32. The digital output of the Node MCU
ESP32 is 3 volts at high output conditions, which is
insufficient to drive the bias transistor on the relay module.
Figure 4 is a general description of the proposed method to
overcome the gap bias electricity between the digital output
of Node MCU ESP32 with the relay module that requires a
5 volt as bias input.

Figure 4. The diagram of the proposed method overall, where the Node
MCU ESP32 does not control the relay directly, but instead through

Arduino UNO which stands for relays driver.

As shown in Figure 4, the Node MCU ESP32 is
connected to the Arduino UNO via the serial protocol using
a pair of cables. The serial protocol consists of digital pin
5 of the ESP32, which acts as a distributor serial data (Tx)
pin, connected to digital pin 2 of the Arduino UNO, which
acts as a recipient serial data (Rx) pin. Arduino pin 3 acts
as the Tx pin connected to the Node MCU ESP32 on digital
pin D4 as the Rx pin. This method also uses serial JSON
library to encapsulate the command from ESP32 sent to
Arduino UNO. After the JSON data is received by Arduino
UNO, the JSON is deserialized and extracted to obtain the
command for further use to control the digital input/output
(I/O) pin. The digital I/O pins of Arduino UNO that used in
this study are Pin 4, 5, 6, 7 that connected to Relay module
1, 2, 3, and 4 respectively (see Figure 5).

Figure 5. The detail of the proposed method to overcome the lack of
control from the Node MCU ESP32 to the relay module, caused by a gap

of different voltages, by adding the Arduino UNO module.

132 JURNAL EMACS (Engineering, MAthematics and Computer Science) Vol.5 No.3 September 2023: 129-135

Figure 5 is the actual implementation of the study
proposal from Figure 4. As shown in Figure 5, to give
a command from Arduino UNO to the Relay module,
the digital output pin number 4 from Arduino UNO is
connected to the Relay 1 module. Digital output pin number
5 is connected to Relay 2. The digital output pin number 6
is connected to Relay 3 and the digital output pin number 7
of the Arduino is connected to Relay 7.

The step-by-step experiment carried out will be
discussed in this session. Where the experiment consists of
4 steps. The first step is the installation of the hardware, the
second step is the programming of the Node MCU ESP32,
the third step is the programming of the Arduino module
and the last or fourth step is an evaluation by doing the
experiment of switching on and off the relay that was done
by the Node MCU ESP32.

The first step is the stringing hardware process, which
consists of making a hardware connection by soldering each
pin Tx/Rx between the Node MCU ESP32 and Arduino
UNO using the cable and soldering the digital output pin
from Arduino to the relay module, also using a cable. The
details of the wiring hardware can be seen in Figure 6.

In the second step, a program displayed on Code 1
is used to program the Node MCU ESP32. In Code 1 there
are four different variables that have been used. These are
Relay1, Relay2, Relay3, and Relay4. For example, when
the process is initialized as doc[“relay1”] = 1, it
means the Node MCU ESP32 will send the command to
turn off the relay that will deliver to Arduino UNO. The
ESP32 will send the command to turn on the relay module
if the value set as 2, for example the program in Node
MCU ESP32, the Arduino JSON form can be expressed as
doc[“relay3”] = 2. The step on the Code 1, the
SoftwareSerial.h library was used to configure the custom
of serial pin hardware freely.

#include <ArduinoJson.h>
#include <SoftwareSerial.h>

SoftwareSerial s(5, 4);

void setup() {
 s.begin(9600);
}

void loop() {
 StaticJsonDocument<255> doc;
 doc[“relay1”] = 1;
 doc[“relay2”] = 1;
 doc[“relay3”] = 2;
 doc[“relay4”] = 1;

 serializeJson(doc, s);
}

Code 1: The programs for Node MCU ESP32 that contained
library ArduinoJson for wrapping or serializing of four
different variables then sent to custom serial that declared
on digital pin 5 for serial transmitter and digital pin 4 for
serial receiver.

The third step was, after the programming of the
Node MCU ESP32 using the source code shown in Code 1,
the development of the Arduino UNO module was continued

by programming using the source code shown in Code 2.
For the Arduino UNO module, the Software was also used
to custom initialize the new Rx/Tx pin configuration. The
baud rate that was used for serial communication between
Node MCU with Arduino was 9600.

The fourth step is to evaluate a way to give the
command to switch on or off by programs statically on
ESP32 and then measure the output result of Arduino UNO
connected to the relay module.

#include <SoftwareSerial.h>
#include <ArduinoJson.h>
SoftwareSerial s(3, 2);
int relay1 = 4;
int relay2 = 5;
int relay3 = 6;
int relay4 = 7;
void setup() {
 s.begin(9600);
 pinMode(relay1, OUTPUT);
 pinMode(relay2, OUTPUT);
 pinMode(relay3, OUTPUT);
 pinMode(relay4, OUTPUT);

 digitalWrite(relay1, LOW);
 digitalWrite(relay2, LOW);
 digitalWrite(relay3, LOW);
 digitalWrite(relay4, LOW);
}
int relay_1 = 0;
int relay_2 = 0;
int relay_3 = 0;
int relay_4 = 0;

void loop() {
 StaticJsonDocument<255> doc;
 DeserializationError err = deserializeJson(doc, s);
 if (err == DeserializationError::Ok) {
 relay_1 = (int)doc[“relay1”];
 if(relay_1 == 1) digitalWrite(relay1, LOW);
 else if(relay_1 == 2) digitalWrite(relay1, HIGH);

 relay_2 = (int)doc[“relay2”];
 if(relay_2 == 1) digitalWrite(relay2, LOW);
 else if(relay_2 == 2) digitalWrite(relay2, HIGH);

 relay_3 = (int)doc[“relay3”];
 if(relay_3 == 1) digitalWrite(relay3, LOW);
 else if(relay_3 == 2) digitalWrite(relay3, HIGH);

 relay_4 = (int)doc[“relay4”];
 if(relay_4 == 1) digitalWrite(relay4, LOW);
 else if(relay_4 == 2) digitalWrite(relay4, HIGH);
 }
}

Code 2: The programs that implemented on Arduino
UNO as a driver relay module.

Figure 6. The result of experimenting with a combined Node MCU
ESP32 connected to an Arduino UNO and a 4 channel Relay module.

133Relay Driver Based on Arduino UNO to Bridge the Gap of The Digital Output Voltage… (Yulianto)

III. RESULTS AND DISCUSSION

In this section, 5 different experiments were carried
out to prove the result. The detailed result can be seen in
Table I. The first experiment is to make relay module 1,
relay module 2, relay module 3, and relay module 4, being
inactive or turned off. It has been done by programming
the Node MCU ESP32 to set all the key of Relay1, Relay2,
Relay3, and Relay 4 set to 1 in JSON form. By using the
command of “serializeJson(doc, s)” in Code 1,
all commands will wrapped and stored in “doc” variable
and distributed to custom serial pin configuration that
initialized as “s” variable. The data in JSON format that is
distributed by Node MCU ESP32 then received by Arduino
UNO module. In the Arduino module then the deserialization
process with purpose to get the value from key variables is
carried out. If the value is 1 then the Arduino will execute
the process of digital write zero to digital pin output. The
result is the digital output pin will in zero-volt condition and
will make the relay module not triggered, and as a result the
relay module will not active or OFF.

In Table I, the number of sequence experimental that
denoted as 2, 3, and 4 is attempt to turned-on and turned-off
the relay module by set the Relay’s key with integer number

of 2. Sequence experiment number 5 in Table I will attempt
to switch on all the relay modules by setting the All-relays
keys to number 2. The reason why in experiment the integer
number 1 was used to turned off command and number
2 used to turn on instead of using number 0 to turned off
and number 1 to turned on was there possibilities from the
deserialize process in Arduino UNO could product the zero
number. These conditions can make the false decision for
the relay module which can result in the relay module not
being stable, or experience turned on or off in irregular
conditions. As a global result, 5 sequences of experimental
can execute precisely to control when the relay must be
turned on or off.

Although this study can control the relay module
successfully, this study has disadvantages in communication
where the command that is sent from the Node MCU ESP32
to Arduino is still in only one way, and asynchronous. For
future work, several machine-to-machine communication
techniques like serial protocol interface (SPI), Inter-
Integrated Circuit (i2c), and or combination of serial
communication with SPI or i2c can be implemented to make
the connection between Node MCU ESP32 to Arduino
UNO module.

Table I. The experimental results of five trials to control turn-on and turn-off relay modules that begin by giving a command from Node MCU ESP32 that
is encoded in JSON format and then transformed or encoded by Arduino UNO being a trigger command for the relay module to turn-on or off

Sequence
Experimental

Node MCU ESP32
Command

Arduino UNO Module Relay Module

Digital
Pin 4

Digital
Pin 5

Digital
Pin 6

Digital
Pin 7

Relay
1

Relay
2

Relay
3

Relay
4

1

{
“Relay1” : 1,
“Relay2” : 1,
“Relay3” : 1,
“Relay4” : 1,

}

0 Volt 0 Volt 0 Volt 0 Volt OFF OFF OFF OFF

2

{
“Relay1” : 2,
“Relay2” : 1,
“Relay3” : 1,
“Relay4” : 1,

}

5 Volt 0 Volt 0 Volt 0 Volt ON OFF OFF OFF

3

{
“Relay1” : 2,
“Relay2” : 2,
“Relay3” : 1,
“Relay4” : 1,

}

5 Volt 5 Volt 0 Volt 0 Volt ON ON OFF OFF

4

{
“Relay1” : 2,
“Relay2” : 2,
“Relay3” : 2,
“Relay4” : 1,

}

5 Volt 5 Volt 5 Volt 0 Volt ON ON ON OFF

5

{
“Relay1” : 2,
“Relay2” : 2,
“Relay3” : 2,
“Relay4” : 2,

}

5 Volt 5 Volt 5 Volt 5 Volt ON ON ON ON

134 JURNAL EMACS (Engineering, MAthematics and Computer Science) Vol.5 No.3 September 2023: 129-135

IV. CONCLUSION

To overcome the weakness of Node MCU ESP32
for controlling the relay module, which is caused by the
difference gap that is too far between the digital output Node
MCU that can only release a 3-volt maximum and the relay
driver that requires the trigger input amount of 5 volts, the
addition of Arduino UNO as an additional driver module
proposed. The Node MCU ESP32 is connected to Arduino
by using serial communication protocol. The Arduino JSON
library was also involved to wrap and encode the command
to turn on and turn off relay in Node MCU ESP32. Arduino
UNO module plays a role to decode the incoming JSON
data that delivered by Node MCU to be a command to
activate the digital Arduino Pins to be digital output for
trigger the relay module. As a result, the command from
ESP32 can be maintained by Arduino UNO to be 5 volts to
trigger the relay module.

REFERENCES

Amoran, A. E., Oluwole, A. S., Fagorola, E. O., & Diar-
ah, R. S. (2021). Home automated system using
Bluetooth and an android application. Scientific
African, 11, e00711. https://doi.org/10.1016/j.
sciaf.2021.e00711

Blanchon, B. (n.d.). ArduinoJson. 2018. Retrieved Novem-
ber 23, 2022, from https://arduinojson.org/

Bourhis, P., Reutter, J. L., & Vrgoč, D. (2020). JSON:
Data model and query languages. Information
Systems, 89, 101478. https://doi.org/https://doi.
org/10.1016/j.is.2019.101478

Ding, J., Nemati, M., Ranaweera, C., & Choi, J. (2020).
IoT connectivity technologies and applications:
A survey. IEEE Access, 8, 67646–67673. https://
doi.org/10.1109/ACCESS.2020.2985932

El-Sayed, W. T., Azzouz, M. A., Zeineldin, H. H., &
El-Saadany, E. F. (2021). A Harmonic Time-Cur-
rent-Voltage Directional Relay for Optimal Pro-
tection Coordination of Inverter-Based Islanded
Microgrids. IEEE Transactions on Smart Grid,
12(3), 1904–1917. https://doi.org/10.1109/
TSG.2020.3044350

Hassan, C. A. U., Iqbal, J., Khan, M. S., Hussain, S., Akhu-
nzada, A., Ali, M., Gani, A., Uddin, M., & Ul-
lah, S. S. (2022). Design and Implementation of
Real-Time Kitchen Monitoring and Automation
System Based on Internet of Things. Energies,
15(18). https://doi.org/10.3390/en15186778

Hermanu, C., Maghfiroh, H., Santoso, H. P., Arifin, Z., &
Harsito, C. (2022). Dual Mode System of Smart
Home Based on Internet of Things. Journal of
Robotics and Control (JRC), 3(1), 26–31. https://
doi.org/10.18196/jrc.v3i1.10961

Ivanov, D., Tang, C. S., Dolgui, A., Battini, D., & Das, A.
(2021). Researchers’ perspectives on Industry

4.0: multi-disciplinary analysis and opportunities
for operations management. International Jour-
nal of Production Research, 59(7), 2055–2078.
https://doi.org/10.1080/00207543.2020.1798035

Khan, A. U., Khan, M. E., Hasan, M., Zakri, W., Alhazmi,
W., & Islam, T. (2022). An Efficient Wireless
Sensor Network Based on the ESP-MESH Proto-
col for Indoor and Outdoor Air Quality Monitor-
ing. Sustainability (Switzerland), 14(24). https://
doi.org/10.3390/su142416630

Lee, J., Anjos, E., & Satti, S. R. (2021). SJSON: A suc-
cinct representation for JSON documents. In-
formation Systems, 97. https://doi.org/10.1016/j.
is.2020.101686

Liu, Z. H., Hammerschmidt, B., McMahon, D., Chang, H.,
Lu, Y., Spiegel, J., Sosa, A. C., Suresh, S., Arora,
G., & Arora, V. (2020). Native JSON Datatype
Support: Maturing SQL and NoSQL conver-
gence in Oracle Database. Proceedings of the
VLDB Endowment, 13(12), 3059–3071. www.
scopus.com

Mironov, V., Gusarenko, A., Yusupova, N., & Smetanin, Y.
(2020). Json documents processing using situa-
tion-oriented databases. Acta Polytechnica Hun-
garica, 17(8), 29–40. https://doi.org/10.12700/
APH.17.8.2020.8.3

Nižetić, S., Šolić, P., López-de-Ipiña González-de-Artaza,
D., & Patrono, L. (2020). Internet of Things (IoT):
Opportunities, issues and challenges towards a
smart and sustainable future. Journal of Cleaner
Production, 274. https://doi.org/10.1016/j.jcle-
pro.2020.122877

Parab, R., & Prajapati, S. (2019). IoT based relay opera-
tion. International Journal of Engineering and
Advanced Technology, 9(1), 6515–6520. https://
doi.org/10.35940/ijeat.A1415.109119

Perkasa, R., Wahyuni, R., Melyanti, R., Herianto, & Irawan,
Y. (2021). Light control using human body tem-
perature based on arduino uno and PIR (Passive
Infrared Receiver) sensor. Journal of Robotics
and Control (JRC), 2(4), 307–310. https://doi.
org/10.18196/jrc.2497

Rahman, M. S., Peeri, N. C., Shrestha, N., Zaki, R., Haque,
U., & Hamid, S. H. A. (2020). Defending against
the Novel Coronavirus (COVID-19) outbreak:
How can the Internet of Things (IoT) help to
save the world? Health Policy and Technolo-
gy, 9(2), 136–138. https://doi.org/10.1016/j.
hlpt.2020.04.005

Shen, G., Zhang, J., Marshall, A., Peng, L., & Wang, X.
(2021). Radio Frequency Fingerprint Identifi-
cation for LoRa Using Deep Learning. IEEE
Journal on Selected Areas in Communications,
39(8), 2604–2616. https://doi.org/10.1109/
JSAC.2021.3087250

Siu, K. K. M., Ho, C. N. M., & Li, D. (2020). Design and anal-

135Relay Driver Based on Arduino UNO to Bridge the Gap of The Digital Output Voltage… (Yulianto)

ysis of a bidirectional hybrid DC circuit breaker
using AC relays with long life time. IEEE Trans-
actions on Power Electronics, 36(3), 2889–2900.
https://doi.org/10.1109/TPEL.2020.3013612

Sun, G.-., Yun, J.-., & Cheon, M.-. (2021). Parallel Switch
Configuration for High Voltage DC Switching to
Secure PV Power System Safety. Transactions
on Electrical and Electronic Materials, 22(1),
108–113. https://doi.org/10.1007/s42341-020-
00279-9

Uguru-Okorie, D. C., Adebimpe, A. M., Oni, T. O., &
Omoyemi, P. (2022). Development of an auto-
mated bitter leaf processing machine. Scientific
African, 17. https://doi.org/10.1016/j.sciaf.2022.
e01311

Xu, X., He, C., Xu, Z., Qi, L., Wan, S., & Bhuiyan, M.
Z. A. (2020). Joint Optimization of Offload-
ing Utility and Privacy for Edge Computing
Enabled IoT. IEEE Internet of Things Jour-
nal, 7(4), 2622–2629. https://doi.org/10.1109/
JIOT.2019.2944007

Yahya, O. H., Alrikabi, H. T. S., & Aljazaery, I. A. (2020).
Reducing the data rate in internet of things appli-
cations by using wireless sensor network. Inter-
national Journal of Online and Biomedical Engi-
neering, 16(3), 107–116. https://doi.org/10.3991/
ijoe.v16i03.13021

Zheng, T., Ardolino, M., Bacchetti, A., & Perona, M. (2021).
The applications of Industry 4.0 technologies in
manufacturing context: a systematic literature
review. International Journal of Production Re-
search, 59(6), 1922–1954. https://doi.org/10.108
0/00207543.2020.1824085

