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Abstract – Bridge structures can be damaged due to various 
factors such as pressure, vibration, temperature, etc. This 
study aims to detect damaged on bridges early so that 
accidents that can occur due to the damaged-on bridge can 
be avoided. The research method is divided into designing 
a model, building the model, and evaluating the model. The 
result of this research is a program that can classify healthy 
or damaged bridges using vibration data of tested points 
on bridges.
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I. INTRODUCTION

Bridges are defined as building structures that 
connect routes or paths that are disconnected by the rivers, 
lakes, straits, canals, roads, or other crossings (Amir, 2013). 
Naturally, bridge construction resistance tends to decrease 
over time. Regular monitoring is needed to prevent a sudden 
collapse of bridges that can cause material and non-material 
harm. The collapse of bridges can disrupt the course of 
socio-economic activities in communities in various sectors 
such as education, commerce, and health.

To prevent the occurrence of collapsing bridges, 
it is necessary to monitor the health of the bridge or 
commonly known as Structural Health Monitoring System 
(SHMS). SHMS is the process of implementing a damage 
identification strategy for aerospace, civil, and mechanical 
infrastructure (Bagavathiappan et al, 2013). SHMS uses 
smart sensor technology to assist in identifying structural 
abnormalities by using measurable structural parameter 
responses. With careful planning in sensor placement, the 

SHMS can collect the necessary data on the condition of the 
bridge. Such data as load rate, deformation rate, deflection, 
temperature, and other structural properties are changing 
with time (Hanus & Harris, 2013). With this technology, 
bridge damage can be detected earlier so that repairs can be 
done with minimum cost and extend the life of the bridge.

To be able to know the bridge that needs to get 
monitoring or immediate handling, it is necessary to 
classify the damage. Classification will be done using the 
method of Artificial Neural Network (ANN). ANN is a 
model of intelligence inspired by the structure of the human 
brain and then implemented using a computer program 
capable of completing several calculation processes during 
the learning process (Rayata et al, 2014). ANN is used 
to classify certain patterns that are often known as linear 
separations. Hopefully, with this research, bridge damage 
can be analyzed quickly and precisely. 

In this study, the main reference used there are two, 
namely (Gunawan, 2017) and (Suryanita & Adnan, 2014). 
In previous research, the accuracy rate in predicting damage 
to a bridge structure only reached 84%. Research on the 
first reference is done using the Support Vector Machine 
method, while research on the second reference is done by 
using the backpropagation method, with activation function 
using Sigmoid. All experiments will be conducted using 
the backpropagation method with the Sigmoid activation 
function and the Rectified Linear Units (ReLU) activation 
function.

Based on the background that has been mentioned 
above, shows the main purpose of this study is to produce a 
form of backpropagation neural network architecture to be 
used in predicting damage to the bridge structure with the 
best performance in this case.
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The rest of this paper is structured as follows. In 
Section II, we describe the methodology that is used in this 
study. Then, the details of all conducted experiments and 
the results are presented in Section III. Lastly, Section IV 
concludes our works in this paper and discusses the future 
work.

II. METHODS

The details of our methodology are described as 
follows.

2.1 Data Collection Method
Data is generated from numerical analysis of a seven-

degree system of freedom (7-DOF), similar to that of Farrar 
and Worden (Farrar & Worden, 2012). The system consists 
of seven masses weighing 1 kg each and eight springs with 
a stiffness of 1 N/m each. Both ends of the system are fixed. 
The dynamic force, f (t) , has a random value placed on the 
center mass, . The force value f (t) is taken from a normal 
probabilistic distribution with a mean of zero and a standard 
deviation of 0.09. Initially, the random data f (t) has a 
frequency of 25 Hz, then filtered by using a Butterworth 
filter with a cutting frequency at 20 Hz and order 12.

Damage to the structure is assumed to occur at the 
spring between m3 and m4 and only decreases the constant 
value of the spring. This numerical analysis is done by 
using a finite element application, that is LS-Dyna. The 
result of the analysis is the data of the displacement of the 
seven masses. Data is a sample of a constant increase every 
0.1 seconds and with a duration of 360 seconds. For each 
structural condition, the analysis is repeated 500 times by 
making changes to the dynamic force f (t).

Figure 1. Seven Degree System of Freedom Model

The displacement data is denoted by x (t). The value 
of x (t) in the partition becomes a sub-signal M of the same 
length L. Then, the sub- signal in the time domain form is 
converted into the frequency domain by using a discrete 
Fourier transform.

                 (1)

where  and , called sample 
frequency and  is discrete frequency of fi = i . fs / N. To 
shorten expression, we use the symbol Xi to denote X (fi). 

After that, it through a process is called Power 
Spectral Density (PSD), in which the magnitude values 
obtained from the discrete Fourier transform are squared. 
Then averaging the value of Power Spectral Density (PSD). 
This whole process is a process of the Bartlett method.

                             (2)

where the signal length N and the number of sub-
signals M is related by N = LM, where L is the length of the 
sub-signal.

Figure 2. Example Result Graph of Bartlett Method

F test along with a simple classification method has 
been used to perform damage detection. This method has 
been presented in theory (Fassois & Sakellariou, 2009) 
and has been verified by experimentation (Kopsaftopoulos 
& Fassois, 2010). This method depends on the structure 
response that can be obtained by doing some point 
measurement. This method has three steps:

1. Statement of the null and alternative hypothesis for this 
case, namely:

  H0 : Sh (w) = Su (w)                            (3)

  Ha : Sh (w) ≠ Su (w)                            (4)

where S(w) symbol denotes the PSD. The subscript h 
denotes the healthy condition. The subscript u denotes 
the unknown-to-be-sought condition. The structure is 
assumed to be healthy if the Su value is equal or close to  
Sh value, whereas it is considered to be damaged if the 
PSD has changed significantly.

2. F test is done by using the value of PSD that has been 
obtained. F test performs a comparison between Sh (w)
value dan Su (w) value. The calculation using the formula:

                                 (5)

the  denotes the estimated PSD. Under condition (3), 
equation (5) can be simplified to:

                                      (6)

the structure is considered healthy when the F test value 
approaches 1. When the structure is damaged, the F test 
value can deviate from 1 to very large or very small. The 
rate of change in the PSD value determines the value of 
the F test.

3. Determine the upper and lower limits of the F test 
value where the change in PSD can be categorized as 
significant or not. F test results are very sensitive to 
disturbance and produce high fluctuations, often over the 
upper and lower limits on healthy structural conditions.

2.2 Neural Network Method
This research is done by doing some stages as 

follows:

• Designing the model
The first step is to design the model of the 

backpropagation neural network. At this stage determined 
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many layers and nodes are used, the determination of 
learning rate, the activation function used, and the separation 
of training and testing dataset.

In this research, the method used is backpropagation. 
The neural network structure of backpropagation used in 
this research is 20 input nodes, n hidden nodes, and 2 output 
nodes. In this study, the number of hidden nodes to be used 
include 5, 10, 20, and 50. The input node is the data taken 
from the simulation of vibration to the bridge. The output 
node is the data of [1,0] and [0,1], where [1,0] represents 
undamaged bridges and [0,1] represents the damaged 
bridge. The structure of the backpropagation can be seen 
in Figure 3.

Figure 3. Backpropagation Architecture

• Building the model
After the model has been designed, then we begin to 

train the model using the training dataset based on specified 
architecture. Then, the next step is to test the built model 
using the test dataset.

• Evaluating the model
This step is to evaluate the performance of the 

model that has been created. If the results have not reached 
the optimal conditions in which the model can be used in 
case, not underfitting (much data from unattended training 
data) or overfitting (the model corresponds to almost all 
training data, but not in general terms), then we update the 
hyperparameter to increase its result.

III. RESULTS AND DISCUSSION

This research divided the experiments into several 
parts that are discussed in detail here.

3.1 Bridge Analysis using  Statistic
F statistics is a method that has been used to determine 

the extent of bridge damage. To determine whether a bridge 
is damaged or not, it is seen from the highest F statistic and 
the lowest F statistic. If the highest F statistic value or the 
lowest F statistic value exceeds the upper or lower limit of 
F statistics, then the bridge is considered to be defective. 
Conversely, if the highest statistical F value or the lowest F 
statistic value is within the upper bound and lower bound, 
then the bridge is considered healthy.

As shown in Figures 4 and 5, the upper and lower 
borders are marked with a red line. The upper limit is 10 and 
the lower limit is 0.1. In Figure 4, the structure is considered 
to be damaged because the F value of the largest statistic 
passes the upper limit value, i.e., greater than 10 and the 
F value of the smallest statistic passes the lower limit, i.e., 
less than 0.1.

Figure 4. F Statistic Result for Damaged Bridge

On the other hand, Figure 5 depicts the healthy 
bridge structure due to the F values of the largest and 
smallest statistics are within the lower and upper range.

Figure 5. F Statistic Result for Healthy Bridge

Based on the research that has been done previously 
by (Gunawan, 2017), the level of accuracy by using  statistic 
to bridge damage only reaches 72.6%. The main reason is 
that this method often considers a healthy bridge structure 
as a broken bridge.

3.2 Experimental Settings
All experiments were performed using 3 layers, 

which consist of 1 input layer, 1 output layer, and 1 hidden 
layer. This experiment uses the backpropagation method. 
For each epoch, training is done 5 times to avoid biased 
results due to random data factors. The data sharing of 
training and testing used in this research is  from a total 
of 17,493, that’s means there are  data for the training set 
and the remaining are for the test dataset. Accuracy is taken 
every multiple of 50 at the epochs value.

3.3 Experimental Results
In the first experiment, there were 4 experiments 

conducted, where experiments using the Sigmoid activation 
function on the hidden layer and the number of hidden nodes 
vary as shown in Table 1. The initial weight parameters 
used a normal distribution with a mean value average of 0, 
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a standard deviation of 1, and the initial bias value is zero. 
Training in the first experiment was performed using the 
following parameters:

Table 1. Default Parameter for 1st Experiment

Parameter Value

Epochs 700.000

Learning Rate 5 x 10-3

Batch Size 5.000

Activation Function of 
Output Layer Softmax

Activation Function of 
Hidden Layer Sigmoid

Table 2. Changing Parameter for 1st Experiment

Experiment Number of Hidden 
Nodes

I 5
II 10
III 20
IV 50

In the second experiment, the activation function of 
the hidden layer is replaced by using Rectified Linear Units 
(ReLU). Similar to the first experiment, the weight values 
are initiated using a normal distribution with an average 
value of 0 and a standard deviation of 1, the initial bias value 
is zero, and 4 experiments are performed by differentiating 
the number of hidden nodes. The hyperparameters are used 
in this second experiment as follows:

Table 3. Default Parameter for 2nd Experiment

Parameter Value

Epochs 700.000

Learning Rate 5 x 10-3

Batch Size 5.000

Activation Function of 
Output Layer Softmax

Activation Function of 
Hidden Layer ReLu

Table 4. Changing Parameter for 2nd Experiment

Experiment Number of Hidden 
Nodes

I 5
II 10
III 20
IV 50

 
Accuracy value is obtained from the percentage 

between predicted output and actual output. In the first 
experiment can be seen in Figure 6, the converging value 
of epochs 8,000. In Figure 7, the converging value of 
epochs 8,000. In Figure 8, the value converges from 4,000, 
but on the 12,000 epochs, there is an increase. In Figure 
9 the convergent value of 10,000 epochs. From these four 
experiments the best between first experiment accuracy I 

(Figure 6) and first experiment accuracy II (Figure 7).

Figure 6. First Experiment Accuracy I

Figure 7. First Experiment Accuracy II

Figure 8. First Experiment Accuracy III

Figure 9. First Experiment Accuracy IV

In the second experiment can be seen in Figure 10, 
the converging value of epochs 4,000. In Figure 11, the 
convergent values of 4,000 epochs, however, are more 
unstable than the prior experiment (Figure 10). In Figure 12, 
the convergent value of 8,000. In Figure 13 the convergent 
value of the 2,000 epochs, but at 10,000 epochs the accuracy 
falls from 0.87 to 0.2. Therefore, the best of these four 
experiments is second experiment accuracy I (Figure 10). 
Then, when compared to the first experiment, the second 
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experiment is much better because the convergent value is 
faster.

Figure 10. Second Experiment Accuracy I

Figure 11. Second Experiment Accuracy II

Figure 12. Second Experiment Accuracy III

Figure 13. Second Experiment Accuracy IV

In the first experiment, the accuracy was between 
0.8525 and 0.8559. In the second experiment, the 
accuracy was between 0.8616 and 0.8767 with the most 
recent experimental accuracy of only 0.1973. Then from 
the second experiment itself can be seen that the highest 
accuracy value is experiment III with an accuracy of 0.8767 
or 87.67%. Based on the average value of accuracy (Figure 
14), it can be concluded that the second experiment where 

the activation function on the hidden layer using Rectified 
Linear Units (ReLU) has a higher accuracy value than the 
first experiment where the activation function on the hidden 
layer using Sigmoid.

Figure 14. Accuracy Comparison of First Experiment and Second 
Experiment

IV. CONCLUSION

Based on the results of research and analysis that 
have been done, then we conclude that ANN by using the 
backpropagation architecture can be used to predict the 
damage or not of a bridge structure. Moreover, the accuracy 
of our architecture has reached satisfactory results, i.e., 
86%. For the activation function, the ReLU activation 
function works better than the Sigmoid function in this case.

For the next development, we recommend classifying 
the damage of a bridge based on its level of damage and 
testing on the unknown data at once using one healthy data.
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