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Abstract - The growth of deep learning for crowd counting 
is immense in the recent years. This results in numerous deep 
learning model developed with huge multifariousness. This 
paper aims to capture a big picture of existing deep learning 
models for crowd counting. Hence, the development of novel 
models for future works can be accelerated.
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I. INTRODUCTION 

Crowd counting is one of the computer vision problems that 
rapidly flourishes since the advent of deep learning. Since 
2015, state-of-the-art techniques across all crowd counting 
dataset are dominated by the use of Convolutional Neural 
Networks (CNN) (LeCun et al., 1989), one of the deep 
learning models that excels in image processing.

Unfortunately, such a rapid growth resulting in a great 
number of variations arose in deep learning model for 
crowd counting. Therefore, an extensive survey for crowd 
counting with deep learning is essential to develop new ideas 
for future works in this field. This paper aims to provide 
a comprehensive survey for deep learning techniques 
that has been developed for crowd counting. To simplify 
the understanding of recent progress in deep learning for 
crowd counting, we group all techniques into several major 
categories. This will ease the researchers in this field to 
develop novel deep learning models for crowd counting.

II. PROBLEM FORMULATION

The problem of crowd counting in deep learning is typically 
tackled by density map regression. This approach was 
first proposed by in 2010 by Lempitsky and Zisserman 
(Lempitsky & Zisserman, 2010). The density map is 
generated from point annotations centered on the head of 
people in the image. Each point is projected to the density 
map by using Gaussian distribution centered on the point. 
By using this approach, the total count can be calculated by 
summing the value of all pixels in the density map. Figure 1 
shows a sample of a crowd image and its density map.

Figure 1 A sample of crowd image and its density map

To evaluate the quality of the prediction, Mean Absolute 
Error (MAE) and Mean Squared Error (MSE) are usually 
used. These metrics are formulated as follows:

where, zi is the value of a pixel in density map of ith pixel in 
an image, ̂zi  is the predicted value for the ith pixel, and N is 
the total number of pixels in an image.
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III. DATASETS 

For benchmarking in crowd counting, there are four datasets 
that are frequently used: ShanghaiTech Part A and B, UCF_
CC_50, and WorldExpo’10. There are also three other 
notable datasets but used less frequently in crowd counting 
research: UCSD, Mall, and UCF-QNRF. The statistics of 
these dataset are given in table 1.

Table 1 Crowd Counting Dataset Statistics
Dataset #Images Avg. #People
ShanghaiTech Part A 482 501.4 
ShanghaiTech Part B 716 123.6 
UCF_CC_50 50 1279.5 
WorldExpo’10 3,980 50.2
UCF_QNRF 1,535 815.4
UCSD 2,000 ±20.0 
Mall 2,000 ±30.0

In recent crowd counting research, ShanghaiTech Part A and 
B (Y. Zhang, Zhou, Chen, Gao, & Ma, 2016) are the most 
popular to be used for benchmarking. The images in Part 
A were collected by randomly crawling from internet. The 
Part B images were taken from a crowded area in Shanghai.

The second most popular dataset for crowd counting is 
UCF_CC_50 (Idrees, Saleemi, Seibert, & Shah, 2013). 
Despite comprising only 50 images, it has the most crowd 
density among other dataset with 1,279.5 average number 
of people per image. Thus, it poses a different challenge 
than the other crowd counting dataset. The images in this 
dataset were collected from internet.

In terms of number of images, WorldExpo’10 (C. Zhang, 
Li, Wang, & Yang, 2015) is currently the largest dataset 
for crowd counting with 3,980 images. Despite of the 
large number of images, the crowd density of this dataset 
is relatively low among other popular datasets. The images 
in this dataset were captured from 103 different scenes in 
Shanghai 2010 WorldExpo.

To compete with WorldExpo’10, UCF_QNRF dataset 
(Idrees et al., 2018) was developed as another massive 
dataset for crowd counting. Although it consists only 
1,535 images, it has significantly more crowd density than 
WorldExpo’10. The resolution of each images is also about 
14 times larger than WorldExpo’10. The images in this 
dataset were collected from internet.

Among the popular dataset, UCSD (Chan, Zhang-Sheng 
John Liang, & Vasconcelos, 2008) is the earliest dataset 
developed. It consists of 2,000 images with about 20 people 
captured in average. The images were captured from a 
single scene in University of California San Diego (UCSD).

Mall dataset (K. Chen, Loy, Gong, & Xiang, 2012) is 
developed after UCSD to capture more diversities in 
crowd density and environmental condition. It consists of 
2,000 images with about 30 people captured in the images 
averagely. The images were captured from surveillance 
camera in a shopping mall.

Other than the datasets explained before, GCC dataset (Q. 

Wang, Gao, Lin, & Yuan, 2019) recently emerges as one of 
important dataset for crowd counting. GCC has a massive 
size of 15,212 images with average people count of 501.3. 
With such a huge size, GCC is applicable to develop a 
robust deep learning model. However, GCC is not captured 
from real camera, but synthetically generated from GTA 
V scenes. Therefore, this dataset is more suitable for deep 
learning model pretraining rather than for benchmarking.

Figure 2 Multi-column CNN architecture

IV. CATEGORIZATION OF DEEP LEARNING 
MODELS FOR CROWD COUNTING

In this paper, we categorize various approaches in deep 
learning for crowd counting into six major categories:

     1.  Scale-aware CNN
     2.  Multi-tasking CNN
     3.  CNN with local context
     4.  CNN with ensemble learning
     5.  Generative Adversarial Networks (GAN) for     
          crowd counting
     6.  Unsupervised/Semi supervised CNN
  
Section 1 to 6 respectively elaborates each category in 
detail. In section 7, we list several deep learning models 
that are not fit to the six categories.

1. Scale-Aware CNN

Encoding scale prior in a CNN is the most prominent 
approach to create a novel deep learning model nowadays. 
This trend is pioneered by the development of Multi Column 
CNN (MCNN) in 2016 (Y. Zhang et al., 2016). MCNN 
use three-columns CNN with different size of convolution 
kernels for different scaling. The illustration of MCNN 
architecture is given in figure 2.

The design of multiple CNN columns enables the model 
to be perspective-free, meaning that it does not rely on 
additional perspective map. Zhang et al. proved that 
MCNN is able to outperform the previous state-of-the-art 
approach that utilize perspective map. This fact is a huge 
leap in crowd counting research that the scale-aware model 
become a common theme even now.

In the same year, Oñoro-Rubio and López-Sastre emphasize 
more on the benefit of multi-column CNN as perspective-
free model by introducing HydraCNN (Oñoro-Rubio & 
López-Sastre, 2016). This model is developed with three-
columns CNN, which each column is fed with a patch 
with different scale in a same image. In 2016 as well, 
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Boominathan et al. developed CrowdNet (Boominathan, 
Kruthiventi, & Babu, 2016), which comprises deep and 
shallow column. The author argues that the depth difference 
allows each column to capture different scale variation.

The most powerful multi-column scale-aware model to date 
is Adaptive Scenario Discovery (ASD) (Wu et al., 2018) 
that was developed in 2018. It is currently the second-
best model for UCF_CC_50 dataset. ASD uses two CNN 
columns that separately generates density map for sparse 
and congested case.The sparse column uses 4 convolution 
layers with 3x3 kernel size. On the other hand, the congested 
pathway uses 5 convolutional layers with 1x1, 9x9, 7x7, 
7x7, and 3x3 kernel size in sequence, ended with a 2x2 max 
pooling layer. To fuse the result of the sparse and congested 
column, Wu et al. use an adaption module that is modeled 
after Squeeze and Excitation module from SENet (Hu, 
Shen, Albanie, Sun, & Wu, 2019).

In 2018 as well, there are three other crowd counting research 
that used multi-column scale-aware approach: Adaptively 
Fusing Predictions (AFP) and iterative counting CNN 
(ic-CNN). Each CNN column in AFP takes a same image 
with different scaling as input. Afterward, each column 
predicts its own attention map and intermediary density 
map. The final density map is generated by weighting 
each intermediary density map with the corresponding 
attention map and fusing them with a 1x1 convolutional 
layer. Meanwhile, ic-CNN use two CNN columns for high 
resolution (HR-CNN) and low resolution (LR-CNN). The 
predicted density map and convolutional features of LR-
CNN is passed to HR-CNN. Given the image, LR-CNN 
density map, and LR-CNN convolutional feature, HR-CNN 
predict a density map with the same size as the ground truth 
density map.

The most recent model that belongs to multi-column scale-
aware CNN category is Scale-Aware Attention Networks 
(SAAN) by Hossain et al. (Hossain, Hosseinzadeh, 
Chanda, & Wang, 2019). SAAN employs a three-columns 
architecture with different kernel size similar to MCNN. 
The generated density map of each column is weighted with 
the output of two other networks, Global Scale Attention 
(GSA) and Local Scale Attention (LSA). GSA provides 
three scalar weights for each column while LSA provides 
pixel-wise weighting for each column.

Although the scale-aware approach was pioneered by 
multi-column architecture, the recent trend is shifted to 
encode scale prior in single-column CNN. This approach 
allows faster processing time, as the total parameters are 
usually much smaller than multi-column approach. The 
most common idea of single-column scale-aware CNN is to 

design a module that is able to encode a variation of scale 
in an image, or in the other word, a scale-aware module. 
Therefore, a single-column CNN built with the module 
can be a scale-aware model. Figure 3 illustrates the scale 
pyramid module in SPN, one of the single-column scale-
aware CNN that utilize the scale-aware module idea.

Surprisingly, single-column CNN approach happens to be 
not only faster, but also generally better in performance. 
In fact, there are two single-column models that achieve a 
state-of-the-art performance in at least one of the popular 
crowd counting datasets. These models are Scale Spatial 
Fully Connected Networks (SFCN) and Scale Pyramid 
Networks (SPN). 

SFCN is currently one of the state-of-the-art models 
for ShanghaiTech Dataset Part B. It stacks a dilated 
convolutional layer (Yu & Koltun, 2015) and a Down Up 
Left Right (DULR) layer on top of the first three blocks 
of ResNet101 (He, Zhang, Ren, & Sun, 2016). The DULR 
layer is a stack of (1 x w) and (h x 1) convolutional layer. 
It was first introduced in PCC Net (Gao, Wang, & Li, 
2019). By using DULR layer, SFCN is able to encode the 
difference in scale changes from the upper part of image to 
the lower part of image as well as from the left part of image 
to right part of image. SFCN also achieve its impressive 
performance by the help of pretraining from GCC dataset.

Meanwhile, SPN has a state-of-the-art performance on 
ShanghaiTech Dataset Part A. The author of SPN proposed 
a scale pyramid module that uses 4 parallel dilated 
convolution kernels with different dilation rate. The dilation 
rate of each kernel is 2, 4, 8, and 12 respectively. This scale 
pyramid module is the main building block of SPN. With 
the four size of dilation rate in scale pyramid module, the 
SPN is able to encode four variation of scale.

The first work that used single-column scale-aware 
architecture was done by Zeng et al. in 2017 (Zeng, Xu, 
Cai, Qiu, & Zhang, 2017). They proposed Multi-Scale CNN 
(MSCNN), which layers are built with a module called as 
multi-scale blob. This module is an inception-like module 
(Szegedy et al., 2015) but with 3x3, 5x5, 7x7, and 9x9 
kernels for each path in the module. In a similar way to 
SPN, the four different kernel size is able to encode different 
variation of scale.

In the following year after MSCNN introduction, there are 
three works that used single-column scale-aware CNN for 
crowd counting: Single Column Networks (SCNet), Scale 
Aggregation Networks (SANet), and Scale-adaptive CNN 
(SaCNN). In SCNet (Z. Wang et al., 2018), a residual fusion 
module is introduced. This module comprises stacked of 

Figure 3 Illustration of scale pyramid module in SPN
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Nested Dilated Convolutional Layer (NDL), which are 
connected with a residual connection. The idea of NDL is 
similar to scale pyramid module of SPN. The difference is 
that NDL uses 3 different kernel size instead of 4.

Meanwhile, the author of SANet (Cao, Wang, Zhao, & Su, 
2018) proposed a similar module to multi scale blob called 
as scale aggregation module. The module instead uses 
kernels with the size of 1x1, 3x3, 5x5, and 7x7 respectively.
 
Different from other single-column scale-aware CNN, 
SaCNN (L. Zhang, Shi, & Chen, 2018) tackles multi-scale 
encoding not by using scale-aware module. Instead, it 
leverages residual connection  (He et al., 2016) from earlier 
layer to later layer. Because the deeper the layer encodes 
the larger area, combining output from different depths is 
tantamount to fusing information from different scale in an 
image. Specifically, SaCNN uses residual connection from 
layer 5_3 to layer 6_1 of VGG16 (Simonyan & Zisserman, 
2015). To further enhance the scale adaptive effect, the 
Zhang et al. added a strided convolution layer after layer 
6_1 and put another residual connection from layer 4_3 to 
the output. The illustration of SaCNN architecture is given 
in figure 4.
In the same spirit with SaCNN, Liu et al. (Ming Liu, Jue 
Jiang, Zhenqei Guo, Zenan Wang, & Yang Liu, 2018) 
designed a single-column scale-aware CNN by using 
Feature Pyramid Networks (FPN) (Lin et al., 2017) as the 
backbone of Fully Convolutional Networks (FCN) (Long, 
Shelhamer, & Darrell, 2014) that generates a single density 
map. FPN has several residual connections that is able to 
bridge information between feature maps with different 
scale like SaCNN.

To combine the best of both multi-column and single-
column scale-aware CNN, there are several research that 
developed a model containing multiple paths only in several 
part of the networks. For conciseness, this approach will 
be defined as semi multi-column scale-aware CNN in 
this paper. The top example of model in this approach are 
Feature Pyramid Networks for Crowd Counting (FPNCC), 
Context-Aware Networks (CAN), and Congested Scene 
Recognition Networks (CSRNet), which achieve the state-
of-the-art performance in at least one of the popular crowd 
counting datasets.

The idea of semi multi-column CNN is implemented 
in FPNCC (Cenggoro, Aslamiah, & Yunanto, 2019) by 
utilizing Feature Pyramid Networks (FPN) that produces 
multiple outputs in different scale. In this case, three outputs 
from FPN are used. Each of the FPN output is subjected 
to a sequential pair of 1x1 convolutional layers to produce 
several intermediary density maps. This par is the multi-
column part of the FPNCC. Finally, all intermediary density 
maps are then aggregated to generate a single density map 
by using an aggregator module. This module is a series 

of 5x5 and 1x1 convolutional layers. Figure 5 depicts the 
architecture of FPNCC. 
 
In CAN (W. Liu, Salzmann, & Fua, 2019), the semi multi-
column architecture is realized by using different block size 
of Spatial Pyramid Pooling (SPP) (He, Zhang, Ren, & Sun, 
2014) on the 10th layer feature maps of VGG16. Each SPP 
features (scale features) are exposed to a 1x1 conv, then 
the output is subtracted with the 10th layer feature maps of 
VGG16 (contrast features). Afterward, the scale features are 
multiplied with the contrast features to produce weighted 
features, then the weighted features are concatenated with 
VGGNet features to serve as the final feature map. The 
final density map is generated from the final feature map by 
using a sequence of dilated convolution layers.

Similar to CAN, the multi-column part of CSRNet (Li, 
Zhang, & Chen, 2018) is attached on top of the 10th 
layer feature maps of VGG16. However, instead of using 
SPP, CSRNet use four dilated convolution columns with 
different dilation rate. Because of the different dilation rate, 
the output of each column has different size. To aggregate 
all columns output for final density map, they are resized to 
uniform size by using bilinear interpolation.

Other than FPNCC, CAN, and CSRNet, there are three other 
deep learning model that can be included in semi multi-
column CNN category: Trellis Encoder Decoder Networks 
(TEDNet), Aggregated Multicolumn Dilated Convolution 
Network (AMDCN), and Deformation Aggregation 
Network (DA-Net).

TEDNet (Jiang et al., 2019) uses a decoding block that takes 
two inputs from consecutive scaling phase. Each of the 
outputted density map for different scaling is included in the 
loss function, but not directly included in the final density 
map. The information of each intermediary density map is 
injected to the final density map via the input combination 
in the decoding block.

Like CSRNet, AMDCN (Deb & Ventura, 2018) use multiple 
columns of dilated convolution layers with different dilation 
rate for encoding scale variation. However, the multi-
column part is attached before the first single-column part 
instead of the last layer. 

In DA-Net (Zou, Su, Qu, & Zhou, 2018), the multi-column 
part receive input from the fourth to eighth layer density 
map of VGG16. The multi-column part that takes fourth 
to seventh layer feature map use deformable convolution 
layer (Dai et al., 2017) to generate an intermediary density 
map. The other column uses a vanilla convolution layer to 
produce the intermediary density map.  Subsequently, all 
intermediary density maps are summed to produce the final 
density map.

Figure 4 Illustration of SaCNN architecture
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2. Multi-Tasking CNN for Crowd Counting

Multi-tasking is one of the prevalent techniques in deep 
learning that is capable to improve the model performance. 
This approach let the model to do several related tasks in 
addition to the main task, that is density map regression in 
crowd counting case. These additional tasks can serve as 
regularizers that forces the model to learn a more useful 
feature representation. The simplest implementation of this 
approach is to let the model jointly be trained on several 
tasks without any direct collaboration between tasks. This 
paradigm is adopted in by the first work that uses multi-
tasking CNN for crowd counting by Zhang et al. (C. Zhang 
et al., 2015). They developed a CNN that jointly regresses 
the density map as well as the global count. In addition to 
single-column scale-aware architecture, SaCNN and its 
improvement (Sang et al., 2019)  also employs multi-task 
learning similar to the work of Zhang et al.

There are two other deep learning model that also uses 
this simplest paradigm of multi-task learning: Cascaded 
Multi-Task Learning (CMTL) (Sindagi & Patel, 2017a) 
and ResNetCrowd (Marsden, McGuinness, Little, & 
O’Connor, 2017). CMTL is jointly trained for crowd 
count classification in addition to density map regression. 
Meanwhile, ResNetCrowd is subjected to multi-task 
learning of four tasks: behavior recognition, density level 
classification, count regression, and density map regression. 

Later, researchers found that collaboration between tasks 
can improve the performance of deep learning model for 
crowd counting, In fact, the most prominent crowd counting 
models with multi-tasking approach use this paradigm: 
Perspective-Aware CNN (PACNN) and Attention-injective 
Deformable Crowd Networks (ADCrowdNet). 

PACNN (M. Shi, Yang, Xu, & Chen, 2019) is currently one 
of the state-of-the-art model for ShanghaiTech Part B and 
UCSD dataset. In addition to density map regression as 
its main task, PACNN also regresses to the corresponding 
perspective map. PACNN produces three density maps with 
1:1, 1:2, and 1:4 ratio to the ground truth density map. It 
also produces two perspective maps with 1:1 and 1:2 ratio. 
The 1:2 and 1:1 density map are combined adaptively by 
generating weighting factors from the estimated density 
map.

Similarly, Attention-injective Deformable Crowd Networks 
(ADCrowdNet), employs collaborative multi-tasking 
approach to achieve a state-of-the-art performance on 
WorldExpo’10 dataset. ADCrowdNet comprises two 

separate networks with different task: Attention Map 
Generator (AMG) and Density Map Estimator (DME). 
Firstly, AMG is trained for classification task of crowd 
versus not-crowd image. Afterward, DME perform the main 
task of density map regression with the additional input of 
attention map generated by AMG. 

Other than PACNN and ADCrowdNet, there are three other 
works that use the collaborative multi-tasking approach: 
Body Structure Aware Deep Crowd Counting (BSAD) 
(Huang et al., 2018), Composition Loss (CL) (Idrees et al., 
2018), and DecideNet (J. Liu, Gao, Meng, & Hauptmann, 
2018).

BSAD use regression of body to body part map and 
structured density map as its tasks for multi-task learning. 
The body part map is generated by using CNN for semantic 
segmentation. The structured density map is generated by 
using Gaussian distribution modelling on the body part 
map. The final density map is extracted from the head 
density map of the whole structured density map.

In CL, four regressors are employed in the network. 
Three regressors are density map estimators with different 
parameter to adjust the width of the gaussian kernel in the 
produced density map. The other regressor directly predicts 
the absolute count. The loss of each regressor is calculated 
and averaged for computing the final loss value. For absolute 
count regressor loss, the predicted count is computed by 
averaging the summed values of all generated density map 
and the predicted absolute count itself.

DecideNet employs three CNNs to accomplish three 
different tasks. The CNNs are named as RegNet, DetNet, 
and QualityNet. RegNet regresses density map as typical 
CNN for crowd counting. DetNet detects heads in the 
style of CNN for object detection. The detected heads are 
converted into density map by putting Gaussian kernel in 
the predicted bounding boxes. To produce the final density 
map, QualityNet generates weighting attention between 
the density map of RegNet and DenseNet. The authors 
argue that RegNet is excellent for counting crowded scene 
while DetNet is better for counting sparse scene. Thus, by 
combining RegNet and DetNet prediction, DecideNet can 
achieve a good performance on both crowded and sparse 
scene. 

Figure 5 Illustration of FPNCC architecture
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3. Incorporating Local Context in Crowd Counting  
    CNN

As what is discussed in section V, crowd image typically 
has different scale across the image. However, the variation 
in scale changes gradually from upper side of the image to 
the lower side or from left to right. Therefore, as we take a 
smaller patch, the variation of scale is also become smaller 
that to some extent can be neglected. Several research in 
crowd counting take advantage from the local context to 
design a deep learning model that is robust to scale variation 
without any scale-aware architecture. The first CNN model 
that uses this approach are Contextual Pyramid CNN (CP-
CNN) (Sindagi & Patel, 2017b) and Switching-CNN (Sam, 
Surya, & Babu, 2017). 

[CP-CNN]: Use three CNN: Global Context Estimator 
(GLE), Local Context Estimator (LSE), and Density Map 
Estimator (DME). The GLE and LSE are trained to classify 
density level of full image and its patches respectively. 
The DME is trained as typical CNN for crowd counting. 
To generate the final density map, the last feature maps of 
GLE, LSE, and DME are concatenated and fed to a Fusion 
CNN (F-CNN). The F-CNN is also trained to generate 
density map like DME. 

In Switching-CNN, the input image is split into 9 non-
overlapping patches. Afterward, these 9 patches are fed into 
three-column CNN. Another CNN column is employed to 
decide which column delivers the best performance given 
a certain patch.

A year after, the authors of Switching-CNN proposed an 
improved version of Switching-CNN called as Incrementally 
Growing CNN (IG-CNN) (Sam, Sajjan, Babu, & Srinivasan, 
2018). In IG-CNN, each CNN column is pretrained by using 
an incrementally growing strategy. Firstly, a base CNN is 
trained with the whole dataset. Afterward, the base CNN is 
copied into two new CNN. The training dataset is also split 
into two subset and fed to the respective new CNN. These 
steps are repeated until the predetermined maximum tree 
depth is reached.

The local context approach is one of the promising 
techniques for future crowd counting model. One of 
the model in this approach, Deep Recurrent Spatial-
Aware Network (DRSAN) (L. Liu, Wang, Li, Ouyang, 
& Lin, 2018), is able to achieve a state-of-the-art result 
on ShanghaiTech Part A dataset. The core of DRSAN is 
a module called as Recurrent Spatial-Aware Refinement 
(RSAR), which comprises Attentional Region Locator 
(ARL) module and Local Refinement Networks (LRN) 
module. First, global features are generated by using a 
three-column CNN. An initial density map is generated 
from the global features with a convolutional layer with 
1x1 kernels. Subsequently, the initial density map is refined 
by RSAR, first by locating a local region of interest using 
ARL. This ARL is constructed by the combination of Long 
Short-Term Memory (LSTM) (Hochreiter & Schmidhuber, 
1997) and Spatial Transformer Networks (STN) (Jaderberg, 
Simonyan, Zisserman, & Kavukcuoglu, 2015). The use of 
LSTM enables RSAR to generates multiple local regions 
iteratively. For each iteration, the corresponding density 
sub-map is refined by using LRN, which is a three-column 
CNN with residual connections.  

Recently in 2019, there are two works that also use local 
context in the model: Recurrent Attentive Zooming 
Networks (RAZ-Net) (C. Liu, Weng, & Mu, 2019) and 
Scale-Aware Attention Networks (SAAN) (Hossain et al., 
2019).

RAZ-Net is trained in two phases. In the first phase, a main 
CNN is trained as a typical density map regressor with an 
extra column to propose a region to zoom. Subsequently, 
RAZ-Net is trained to recurrently refine the proposed 
zooming regions.
Meanwhile, SAAN uses three type of CNN: Multi-scale 
Feature Extractor (MFE), Global Scale Attention (GSA), 
and Local Scale Attention (LSA). The MFE is a three-
column CNN with different kernel size to extract features 
from different scale. The outputs of MFE is weighted by 
using global weights from GSA and pixel-wise attention 
from LSA. The weighted feature maps is fused by a Fusion 
Network to generate the final density map.

4. Leveraging Ensemble Learning For Crowd
 Counting With CNN

In machine learning field, ensemble learning technique is 
currently one of the most prominent technique to improve 
the performance of a model. In fact, one of the most powerful 
modern machine learning model, XGBoost (T. Chen & 
Guestrin, 2016), is essentially an ensemble of decision 
tree with gradient boosting machine (GBM) paradigm 
(Friedman, 2001, 2002). Motivated by the impressive 
performance of GBM. Wallach and Wolf (Walach & Wolf, 
2016) designed CNN-Boosting, an ensemble of CNN that 
use GBM for crowd counting. Although it is not a state-
of-the-art model for crowd counting, CNN-Boosting has 
a competitive performance on UCSD, Mall, and UCF_
CC_50.

The use of ensemble learning is not actually popular in 
crowd counting research. To the best of our knowledge, 
there are only two works that use ensemble learning in 
CNN for crowd counting: CNN-Boosting and Decorrelated 
Convolutional Networks (D-ConvNet) (Z. Shi, Zhang, Liu, 
et al., 2018). However, the ensemble learning approach is 
still promising as D-ConvNet is currently one of the state-
of-the-art models for WorldExpo’10 dataset.

D-ConvNet infuses ensemble learning concept in CNN by 
adopting Negative Correlation Learning (NCL) (Y. Liu & 
Yao, 1999). NCL is originally a method for robust ensemble 
learning that encourages diversity among models in the 
ensemble. D-ConvNet use NCL by employing multiple 
density map generator on top of the VGG16 last features. 
All generators are treated as an ensemble of models and 
trained with NCL.

5. Crowd Counting With Generative Adversarial
    Networks

With the problem formulation of density map regression, 
crowd counting can be thought as generating density map 
image given a crowd image. Therefore, this problem can 
naturally be solved by image generator algorithm such as 
Generative Adversarial Networks (GAN) (Goodfellow et 
al., 2014). Despite the straightforward implementation, only 
three works tried to use GAN for crowd counting to date: 
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Adversarial Cross-Scale Consistenty Pursuit (ACSCP), 
Multi-Scale GAN (MS-GAN), and GAN Multiple Target 
Regression (GAN-MTR).

ACSCP (Shen et al., 2018) uses two GANs, the first one 
generates density map from full image, the second one 
generates density map from one fourth of the full image. The 
author proposed Cross-Scale Consistency Pursuit (CSCP) 
loss, which minimizes the absolute difference between 
generated density map from the two GANs employed.

MS-GAN (Yang, Zhou, & Kung, 2018) uses scale-aware 
CNN architecture for generating density map. The scale-
aware architecture is a single column CNN which each 
layer output is concatenated to produce the density map.

GAN-MTR (Olmschenk, Tang, & Zhu, 2018) incorporates 
a semi-supervised framework to train a GAN for crowd 
counting. The supervised loss of the algorithm is the typical 
crowd counting supervised loss. The unsupervised loss 
penalized the output if the range is outside of the known 
output. The density map generated form fake image is 
punished to zero.

6. Approaches With Semi-Supervised Learning

Compared to other computer vision problem such as image 
classification and object detection, the size of annotated 
crowd counting dataset is significantly smaller. Deep 
learning is known to have a better performance with bigger 
data, thus the size of crowd counting dataset is a challenge 
to develop a robust deep learning model. Given the limited 
size of annotated data, semi-supervised learning algorithms 
is promising to be used for crowd counting. Currently, there 
are three semi-supervised CNN that has been developed 
for crowd counting: Grid Winner-Take-All Autoencoder 
(GWTA) (Sam, Sajjan, Maurya, & Babu, 2019), Learning 
to Rank (L2R) (X. Liu, van de Weijer, & Bagdanov, 2018), 
and the previously explained GAN-MTR.

GWTA is a modified version of Winner-Take-All 
Autoencoder (WTA) (Makhzani & Frey, 2015) specifically 
designed for crowd counting. If WTA is straightly applied 
to crowd counting, it can only be used to select units with 
largest activation globally. In GWTA, the selection process 
is done within grids, that are formed by dividing the last 
feature maps into sub-regions. This allows GWTA to select 
largest activation in local context, thus introduces a more 
reliable performance locally. As a typical autoencoder, 
GWTA can be trained unsupervisedly to reconstruct its 
input. Only the last two layers are trained in supervisedly. 

Meanwhile, L2R uses a semi-supervised framework that 
can be seen as a multi-task learning with supervised and 
unsupervised task. The supervised task is the standard 
density maps regression task. The unsupervised task is to 
rank between images, which has more crowd count. The 
ranking data is formed by taking sub-images of a crowd 
image. The authors assume that the sub-images should have 
less crowd count than the original image, thus they guide 
the model to rank the sub-images with less count. 

7. Other Approaches For Deep Learning In Crowd
    Counting

Other than the previous six major approaches, there are 
five deep learning models for crowd counting that do not 
fit to the definition of the major approaches: ConvLSTM 
(Xiong, Shi, & Yeung, 2017), Top-Down Feedback CNN 
(TDF-CNN) (Sam & Babu, 2018),  Deeply Recursive 
ResNet, (DR-ResNet) (Ding, Lin, He, Wang, & Huang, 
2018), NetVLAD for crowd counting (Z. Shi, Zhang, Sun, 
& Ye, 2018), and Adaptive Counting CNN (A-CCNN) 
(Amirgholipour, He, Jia, Wang, & Zeibots, 2018).

The main idea of ConvLSTM is to incorporate temporal 
relationship between images in a video for crowd counting. 
This temporal information is captured by using Long Short-
Term Memory (LSTM) (Hochreiter & Schmidhuber, 1997) 
combined with convolutional layer to take image as input 
and generate density map.

In TDF-CNN, two CNN are employed as supporting 
modules: bottom-up network and top-down network. These 
two networks are trained separately in two sequential 
phases. The bottom-up network is trained first as a typical 
density map regressor. Afterward, the bottom-up network 
weights are frozen and used to give feedback features to the 
first layer in the main CNN via top-down networks. 

The next model, DR-ResNet, uses ResNet with two residual 
modules that are stacked to a single CNN. The second 
module is placed on top of the first module to receive the 
output from the first module. Subsequently, the output of 
the second module is passed to the second module once 
again, thus the second module become a residual recursive 
module.

Meanwhile, Shi et al. designed a crowd count model that 
uses NetVLAD (Arandjelovic, Gronat, Torii, Pajdla, & 
Sivic, 2018). NetVLAD is a trainable version of a popular 
visual descriptor VLAD (Vector of Locally Aggregated 
Descriptor) (Jegou, Douze, Schmid, & Perez, 2010).

The last model, A-CCNN, uses fuzzy inference system 
from Mamdani (Mamdani, 1977) to choose optimal 
hyperparameter of Counting CNN (CCNN). CCNN is the 
single column CNN that form the HydraCNN.

8. State-Of-The-Art Methodologies In Crowd
    Counting

In table 2, we list all methods that achieves a state-of-the-
art performance on ShanghaiTech Part A, ShanghaiTech 
Part B, WorldExpo’10, and UCF_CC_50 dataset. We can 
conclude from the table that scale-aware method is the 
most competitive approach for crowd counting. Among 
the state-of-the-art models with scale-aware method, there 
is no model that use multi-column architecture. Thus, the 
introduction of single-column architecture for scale-aware 
model not only allows faster inference, but also more 
powerful performance. Multi-tasking approach is also 
proven to be effective for improving crowd counting CNN, 
which two models become state-of-the-art models. Other 
approach such as local context utilization and ensemble 
learning are also able to produce a state-of-the-art crowd 
counting model. The performance of all state-of-the-art 
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models on the popular crowd counting dataset are listed in 
table 3, 4, 5, and 6

Table 2 State-of-the-art Models in Popular Crowd Counting 
Datasets

Method Category
SFCN Single-column scale-aware CNN
SPN Single-column scale-aware CNN
CAN Semi multi-column scale-aware CNN
CSRNet Semi multi-column scale-aware CNN
FPNCC Semi multi-column scale-aware CNN
ADCrowdNet Multi-tasking CNN

PACNN Multi-tasking CNN
DRSAN CNN with local context
D-ConvNet CNN with ensemble learning

Table 3 State-of-the-art Models Performance on 
ShanghaiTech Part A

Method MAE MSE
SFCN 64.8 107.5
SPN 61.7 99.5
CAN 62.3 100.0
CSRNet 68.2 115.0
FPNCC 81.2 139.2
ADCrowdNet(AMG-bAttn-DME) 63.2 98.9
ADCrowdNet(AMG-Attn-DME)   -   - 
PACNN 66.3 106.4
PACNN + CSRNet 62.4 102.0
DRSAN 69.3 96.4
D-ConvNet-v1 73.5 112.3

Table 4 State-of-the-art Models Performance on 
ShanghaiTech Part B

Method MAE MSE
SFCN 7.6 13.0
SPN 9.4 14.4
CAN 7.8 12.2
CSRNet 10.6 16.0
FPNCC 7.6 12.0
ADCrowdNet(AMG-bAttn-DME) - -
ADCrowdNet(AMG-Attn-DME)   -   - 
PACNN 8.9 13.5
PACNN + CSRNet 7.6 11.8
DRSAN 11.1 18.2
D-ConvNet-v1 73.5 112.3

Table 6 State-of-the-art Models Performance on 
WorldExpo’10

Method S1 S2 S3 S4 S5 Avg
SFCN  -  -  -  -  - 9.4
SPN  -  -  -  -  -  - 
CAN 2.9 12.0 10.0 7.9 4.3 7.4

ECAN 2.4 9.4 8.8 11.2 4.0 7.2
CSRNet 2.9 11.5 8.6 16.6 3.4 8.6
FPNCC 1.9 22 12.3 16 4.3 11.3
ADCrowdNet 
(AMG-bAttn-
DME) 

1.7 14.4 11.5 7.9 3.0 7.7

ADCrowdNet 
(AMG-Attn-
DME) 

1.6 13.2 8.7 10.6 2.6 7.3

PACNN 2.3 12.5 9.1 11.2 3.8 7.8
DRSAN 2.6 11.8 10.3 10.4 3.7 7.8

D-ConvNet-v1 1.9 12.1 20.7 8.3 2.6 9.1

Table 5 State-of-the-art Models Performance on UCF_
CC_50

Method S1 S2 S3 S4 S5 Avg
SFCN  -  -  -  -  - 9.4
SPN  -  -  -  -  -  - 
CAN 2.9 12.0 10.0 7.9 4.3 7.4
ECAN 2.4 9.4 8.8 11.2 4.0 7.2
CSRNet 2.9 11.5 8.6 16.6 3.4 8.6
FPNCC 1.9 22 12.3 16 4.3 11.3
ADCrowdNet 
(AMG-bAttn-
DME) 

1.7 14.4 11.5 7.9 3.0 7.7

ADCrowdNet 
(AMG-Attn-
DME) 

1.6 13.2 8.7 10.6 2.6 7.3

PACNN 2.3 12.5 9.1 11.2 3.8 7.8
DRSAN 2.6 11.8 10.3 10.4 3.7 7.8
D-ConvNet-v1 1.9 12.1 20.7 8.3 2.6 9.1

V. CONCLUSION

In this paper, we extensively review deep learning models 
that are used for crowd counting. To accelerate the 
comprehension of recent progress in deep learning for 
crowd counting, we categorize all models into six groups. 
With the categorization, we can conclude that scale-
aware models are the most successful approach for crowd 
counting to date. Therefore, the future works of crowd 
counting might benefit from incorporating scale-aware 
prior in deep learning models. Other promising approaches 
are to embrace multi-tasking, local context, and ensemble 
learning in a deep learning model.
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