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Abstract — Pneumonia remains a leading cause of
child mortality worldwide, particularly in resource-
limited settings where diagnostic tools and expertise
are scarce. Recent advances in deep learning offer
an opportunity to enhance pneumonia detection
through automated analysis of chest X-ray images.
This study evaluates the performance of ten state-of-
the-art deep learning architectures, including
VGG16, ResNet50, DenseNet121, and MobileNetV2,
for pneumonia detection using the widely recognized
"Chest X-Ray Images (Pneumonia)" dataset. The
dataset  underwent  rigorous  preprocessing,
including image resizing, data augmentation, and
class balancing, to optimize model training and
improve generalization. Performance metrics such
as accuracy, precision, recall, Fl-score, and ROC-
AUC were utilized to assess model effectiveness.
Among the evaluated architectures, MobileNetV2
demonstrated the best performance with an
accuracy of 97.51% and an AUC of 0.9941,
highlighting its potential for reliable diagnostic
applications. The results also emphasize the trade-
offs between sensitivity and specificity across
models, offering useful insights for real-world
deployment. This study underscores the importance
of leveraging deep learning models in clinical
diagnostics, particularly in environments with
limited healthcare resources. Beyond evaluating
models, the findings provide evidence-based
recommendations for selecting efficient
architectures  that  balance  accuracy  and
computational efficiency. Future work will focus on
integrating  multimodal  datasets,  improving
explainability, and validating these models in
diverse clinical environments to ensure scalability,
trust, and generalizability for global health
applications.
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I. INTRODUCTION

Pneumonia remains one of the leading causes of
children's death worldwide, causing over 700,000
deaths each year, with most of them in developing
countries (UNICEF Data, 2024). In such resource-
limited areas, diagnosis of pneumonia is normally
limited by access to professional radiologists and
diagnostic infrastructure, leading to higher mortality
rates from a very preventable condition (World
Health Organization, 2017). To address this, the
WHO through GAPPD (Integrated Global Action
Plan for the Prevention and Control of Pneumonia
and Diarrhea) increased its call for technological
innovation to complement the traditional health
measures such as immunization (World Health
Organization, 2017). Similarly, UNICEF has
highlighted the urgent need for technology-based
solutions that give early diagnosis, especially for
resource-limited environments (UNICEF Data,
2024).

Recent advances in deep learning bring huge
opportunities for revolutionizing medical diagnosis,
using deep learning architectures like VGG, ResNet,
DenseNet, and Xception for the automatic and
efficient analysis of chest X-ray images. However,
the efficiency of such models has to be assessed with
real epidemiological data in order to prove their
applicability in a real-world clinical environment.

Pneumonia cases always show huge
fluctuations over time in Indonesia, especially for
the under-five years children, normally called balita.
According to data from the Indonesian Ministry of
Health [3], the number of pneumonia cases peaked
in February and March 2019, with more than 49,000
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cases among balita afterwards decreased gradually
along the year. Figure 1 presents the monthly
distribution of pneumonia cases in 2019, showing
the seasonal trends and the consistent burden of the
disease.

These statistics highlight the urgency for
scalable diagnostic tools that offer accuracy in an
effort to minimize mortality rates caused by
pneumonia. Deep learning models, especially CNN-
based architectures, which are able to automatically
detect pneumonia from chest X-ray images presents
as one of the efforts toward early diagnosis and
intervention.
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Figure 1. Monthly pneumonia cases in Indonesia (2019),
categorized by age group (balita vs. >5 years old)
(Kementrian Kesehatan RI, 2019).

This study investigates different deep learning
models for detecting the performance of pneumonia
using chest X-ray images. The comparisons of their
performances were done side by side using the
performance metrics to evaluate the findings of each
model for an overall idea included accuracy,
precision, recall, Fl-score, and AUC ROC. The
significant contribution of this study is to provide
guidelines on the selection of the most optimal deep
learning models for clinical diagnostic applications
and to contribute to the global effort to decrease
pneumonia through technological innovation
(Kementrian Kesehatan RI, 2019; UNICEF Data,
2024; World Health Organization, 2017).

The application of deep learning (DL) for
pneumonia detection from chest X-ray (CXR)
images has been widely explored. This section
summarizes key contributions, highlighting
methodologies, model architectures, and outcomes.

The use of VGG-16 with neural networks has
been demonstrated, showing its effectiveness in
pneumonia detection (Kementrian Kesehatan RI,
2019). CNNs have also been employed for
classification, achieving high accuracy (Sharma &
Guleria, 2023). Multiple deep learning models,
including ResNet and DenseNet, have been
compared to validate their efficacy in pneumonia
diagnosis (Asnaoui et al., 2020). CNN architectures
have been adapted for COVID-19 pneumonia
detection, showcasing their versatility (Yue et al.,
2020). Pipelines have been optimized using
compressed sensing techniques (Gabruseva et al.,

2020), and frameworks like Deep-Pneumonia have
been introduced to enhance diagnostic outcomes
(Islam et al., 2022). Gabruseva et al. applied
advanced CNN strategies as part of the RSNA
Pneumonia Detection Challenge, contributing
significantly to the field (Bashar et al., 2021).
Comprehensive  frameworks for  pneumonia
detection, such as that by Barhoom and Abu Naser,
have also demonstrated the potential of DL in
clinical diagnostics (Szepesi & Szilagyi, 2022).

The effectiveness of ensemble models has been
highlighted, integrating diverse architectures for
superior results (Ibrahim et al., 2024). Hybrid
models combining VGG architectures with machine
learning classifiers have also proven successful (Jain
et al., 2020). Ensemble-based CNN techniques have
achieved high diagnostic accuracy in various
scenarios (Elshennawy & Ibrahim, 2020). Methods
integrating multiple architectures have been shown
to outperform individual approaches in robust
evaluations (Yaseliani et al., 2022).

Transfer learning has effectively addressed data
scarcity issues. Pretrained models have been
leveraged for efficiency (Saul et al., 2019), and deep
CNNs have been applied to achieve state-of-the-art
results (Kareem et al., 2022). Feature extraction
methods have also demonstrated enhanced
performance in pneumonia detection (Kundu et al.,
2021). Transfer learning has been critical in several
applications, especially during the COVID-19
pandemic .

CNN architectures have been optimized for
detecting both COVID-19 and general pneumonia
cases (Jaiswal et al.,, 2019; Yue et al., 2020).
Innovative feature extraction techniques have been
proposed to improve diagnostic accuracy (Yaseliani
et al., 2022). Lightweight and efficient models have
also been developed, maintaining high accuracy
while reducing computational demands (Gm et al.,
2021; Racic et al., 2021). Various preprocessing
techniques, including data augmentation and feature
scaling, have also contributed to improvements
(Varshni et al., 2019).

The importance of model selection and
hyperparameter optimization has been underscored
(Ibrahim et al., 2024; Kundu et al., 2021). Dataset
variability has been highlighted as a significant
factor influencing model performance (Jaiswal et al.,
2019). Insights into real-world applicability have
been provided through extensive evaluations
(Hashmi et al., 2020). Comparative investigations of
advanced architectures such as Inception and
Xception networks have yielded critical insights
(Pant et al., 2020).

Deep learning frameworks have been optimized
to distinguish COVID-19 pneumonia from other
types, demonstrating their adaptability (Jaiswal et
al., 2019; Yue et al., 2020). Advanced techniques
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have been explored to improve diagnostic accuracy
under challenging conditions (Singh, 2021).
Machine learning methods for pneumonia detection
have been comprehensively reviewed (Yang & Mei,
2022). Studies have also explored hybrid approaches
integrating traditional classifiers with deep learning
backbones (Jain et al., 2020; Puneet Gupta, 2021).

Challenges such as data imbalance and
overfitting persist in this field (Islam et al., 2022).
Explainable Al has been proposed to enhance
interpretability (Racic et al., 2021; Yaseliani et al.,
2022). Future research should focus on lightweight
models and integrating diverse datasets for real-
world deployment. Additionally, enhancing cross-
platform compatibility and leveraging federated
learning for decentralized datasets could be explored
further (Barhoom et al., 2022).

II. METHODS
Result Analysiz r:EM
[ } ——

Fig. 2 Workflow of the Pneumonia Detection System

To develop an effective pneumonia detection
system, a comprehensive workflow was designed.
This workflow consists of several interconnected
stages, beginning with dataset acquisition, followed
by preprocessing steps, model training, evaluation,
and result analysis. Each stage plays a crucial role in
ensuring accurate and reliable detection of
pneumonia from chest X-ray images.

2.1 Dataset Exploration

The dataset used in this study was obtained from
Kaggle’s "Chest X-Ray Images (Pneumonia)"
repository (Paul Mooney, 2018; Rahman et al.,
2020). It consists of a total of 5,863 chest X-ray
images, divided into two categories: normal and
pneumonia. The dataset contains 1,583 images
labeled as normal and 4,273 images labeled as
pneumonia. These images are further divided into
training, testing, and validation subsets, enabling
robust training and evaluation of the models.

Figure 3. Example of a normal chest X-ray

Figure 4. Examples of chest X-rays with pneumonia,
showing opacities and infiltrates

Figures 3 and 4 illustrate examples of chest X-
rays from the dataset. Figure 3 shows a normal chest
X-ray, where the lung fields are clear, with no visible
signs of opacities or infiltrates, which are common
indicators of pneumonia. Conversely, Figure 4
presents examples of chest X-rays labeled as
"pneumonia,” displaying visible signs of infection,
such as opacities and consolidations in the lung
fields, characteristic of bacterial or viral pneumonia.

2.2 Data Preprocessing

The dataset was divided into three subsets: 70%
for training, 20% for testing, and 10% for validation.
This split ensured that the models were trained on a
majority of the data while having sufficient data for
testing and validation.

To further enhance dataset diversity and reduce
overfitting risks, basic augmentation techniques
such as random rotations, flips, and brightness
adjustments were applied. These augmentations
helped the models generalize better to unseen data
and improved their robustness.

Additionally, all images were resized to a
uniform dimension of 224x224 pixels to meet the
input requirements of the deep learning
architectures. This resizing step was essential to
ensure consistency in input dimensions across all
models and facilitated efficient training.

Finally, to address class imbalance in the dataset,
undersampling and oversampling techniques were
employed. These balancing strategies ensured an
equal representation of normal and pneumonia
images in the training set, preventing model bias
toward the majority class.
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2.3 Model Training and Usage

Ten state-of-the-art deep learning architectures
were implemented to evaluate their performance in
pneumonia detection. These architectures included
VGG16, ResNet50, ResNet101, InceptionResNetV2,
InceptionV3, MobileNetV2, DenseNet121, Xception,
EfficientNetBO0, and EfficientNetB5. Each model was
initialized with pre-trained weights from ImageNet
and fine-tuned on the pneumonia dataset. The training
was conducted using a supervised learning approach,
optimizing categorical cross-entropy as the loss
function. The models were trained for 10 epochs with
a batch size of 32, utilizing an Adam optimizer with
a learning rate of 0.001. Early stopping was applied
to prevent overfitting.

2.4 Model Evaluation

The performance of each model was evaluated
using several metrics, including accuracy, precision,
recall, and Fl-score. Additionally, confusion
matrices were generated to visualize the
classification performance. Training and validation
loss and accuracy curves were plotted to analyze the
models’ learning progress over epochs. The results
obtained from the evaluation metrics and confusion
matrices were analyzed to compare the performance
of the ten deep learning models. The analysis
included identifying the model with the best balance
of precision and recall and interpreting the results to
understand the strengths and weaknesses of each
architecture in detecting pneumonia from chest X-
ray images.

2.5 Result Analysis

The results obtained from the evaluation metrics
and confusion matrices were analyzed to compare
the performance of the ten deep learning models.
The analysis included identifying the model with the
best balance of precision and recall and interpreting
the results to understand the strengths and
weaknesses of each architecture in detecting
pneumonia from chest X-ray images.

2.6 Conclusions

The conclusion section summarized the findings
of the study, highlighting the best-performing
model(s) and discussing the implications of the
results for future research and clinical applications.
Recommendations for potential improvements and
extensions of the work were also provided.

III. RESULTS AND DISCUSSION

This section provides an evaluation of the ten
deep learning models used for pneumonia detection,
focusing on key metrics such as accuracy, precision,
Fl-score, and recall. The analysis highlights the
strengths and limitations of each model, offering
insights into their suitability for chest X-ray imaging
tasks.

3.1 Evaluation Metrics

Table 1. Evaluation Metrics Comparison Across All
Models for Pnuemonia Detection

Comparative Table

No 1
Model Accuracy Precision Recall
Score
1 VGGl6 0,9507 0,9545 0,9412 0,9297

2 ResNet50 0,9732 0,9486 0,9614 0,9768

3 ResNetl101 0,9655 0,941  0,9543 0,9706

InceptionRes

NetV2 0,9579 0,9502  0,9502 0,9502

5 InceptionV3  0,9195 0,8545 0,8754 0,9168

6 E/IObﬂeNeN 09751 09617 09628 0,9639
7 ?enseNetlz 09617 09372 0,9465 009572
8 Xception 09617 0932  0,9359 0,9401
9 EgﬁCientNet 09579 09231 0,9409 0,9652
10 EEéﬁCiemNet 0,933 0891 09125 0,9484

The performance of the ten deep learning models
was evaluated using four primary metrics: accuracy,
precision, Fl-score, and recall, as summarized in
Table 1. Among these models, MobileNetV2
achieved the highest accuracy of 97.5100% and F1-
score of 0.9628, showcasing its superior
performance. ResNet50 demonstrated the highest
recall of 0.9768, indicating its strong ability to
correctly identify positive cases. On the other hand,
InceptionV3 had the lowest accuracy of 92.0000%,
reflecting its lower performance compared to other
architectures. These metrics underscore
MobileNetV2's ability to achieve a harmonious
balance between sensitivity and precision, critical for
reliable pneumonia detection in clinical settings.
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3.2 Accuracy Comparison
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Figure 5. Accuracy comparison across models with

3.2 ROC Curve Analysis
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Table 2. Evaluation Metrics Comparison Across All
Models for Pnuemonia Detection

Comparative Table

No
Model Accuracy

1 VGGIl6 0,9507
2 ResNet50 0,9732
3 ResNetl01 0,9655
4 InceptionResNetV2 0,9579
5 InceptionV3 0,9195
6 MobileNetV2 0,9751
7 DenseNetl21 0,9617
8 Xception 0,9617
9 EfficientNetB0 0,9579
10 EfficientNetB5 0,933

The accuracy comparison among models is
depicted in Figure 5 and Table 2, where
MobileNetV2 distinctly outperforms others with an
accuracy of 97.5100%, closely followed by
ResNet50 at 97.3000%. The competitive accuracy
levels of ResNet101 and InceptionResNetV2, both
exceeding 95.0000%, further highlight the advanced
capabilities of these architectures. In contrast, the
underperformance of InceptionV3 at 92.0000%
suggests potential limitations in its feature extraction
or generalization capability for this specific dataset.
These observations substantiate the conclusion that
MobileNetV2 is optimally suited for this
classification task.
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Figure 6. ROC curves for all models highlighting AUC
performance.

To further analyze the discriminative ability of
each model, the ROC curves were generated as
shown in Figure 6. MobileNetV2 exhibited an AUC
(Area Under the Curve) of 0.9941, representing a
near-perfect ability to differentiate between positive
and negative cases. ResNet50 demonstrated a
comparable AUC, reinforcing its robustness and
effectiveness. Conversely, InceptionV3 recorded the
lowest AUC 0f 0.9838, aligning with its overall lower
metrics. This reinforces the exceptional utility of
MobileNetV2 in achieving precise and reliable
diagnostic outcomes.

3.3 Confusion Matrix Analysis

HoRMAL euHONA

Figure 7. Confusion matrix for MobileNetV2 showing
true and false predictions.
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The confusion matrix for MobileNetV2, presented in
Figure 7, provides granular insights into its
classification performance. The model correctly
identified 378 pneumonia cases (true positives) and
129 normal cases (true negatives), with minimal
misclassifications: 7 false positives and 8 false
negatives. These results underscore the model’s high
sensitivity and specificity, essential for minimizing
diagnostic errors in real-world clinical applications.
This performance highlights MobileNetV2's
reliability in reducing false negatives, a critical
factor in life-threatening conditions like pneumonia.

3.4 Training Process Analysis
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Figure 8. Training and validation metrics for
MobileNetV2 across epochs

The training process of MobileNetV2, depicted in
Figure 8, demonstrates consistent and robust
improvement over epochs. The training accuracy
steadily increased to approximately 96.4000%,
while the wvalidation accuracy remained above
96.0000%, indicative of effective generalization to
unseen data. The convergence of training and
validation loss curves further emphasizes minimal
overfitting, ensuring the model’s reliability in
diverse clinical datasets. These trends validate the
efficiency of the training regime employed and the
architecture’s ability to adapt effectively to the task.

IV. CONCLUSION

This study highlights the pivotal role of deep
learning in addressing global health challenges,
particularly in diagnosing pneumonia from chest X-
ray images. Among the evaluated models,
MobileNetV2 emerged as the optimal architecture,
achieving the highest accuracy (97.5100%) and
AUC (0.9941), alongside robust Fl-score and
balanced sensitivity and specificity. These findings
emphasize MobileNetV2’s capability to deliver
precise and reliable diagnoses, particularly in
resource-constrained settings.

By leveraging the "Chest X-Ray Images
(Pneumonia)" dataset from Kaggle, this research

contributes evidence-based insights into model
performance, supporting the adoption of Al-driven
diagnostics. The integration of such advanced
technologies aligns with global health initiatives,
such as those by WHO and UNICEEF, to reduce
preventable deaths through early and accurate
disease detection.

Future research should explore the integration
of these models into real-world clinical workflows,
addressing challenges such as interpretability, data
privacy, and scalability. Moreover, extending the
analysis to include multimodal datasets, such as
combining X-ray images with patient metadata,
could further enhance diagnostic accuracy.
Collaboration with healthcare providers to validate
these models on diverse populations and settings will
be essential for ensuring their effectiveness and
generalizability in real-world applications.
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