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Abstract –  Pneumonia remains a leading cause of 

child mortality worldwide, particularly in resource-

limited settings where diagnostic tools and expertise 

are scarce. Recent advances in deep learning offer 

an opportunity to enhance pneumonia detection 

through automated analysis of chest X-ray images. 

This study evaluates the performance of ten state-of-

the-art deep learning architectures, including 

VGG16, ResNet50, DenseNet121, and MobileNetV2, 

for pneumonia detection using the widely recognized 

"Chest X-Ray Images (Pneumonia)" dataset. The 

dataset underwent rigorous preprocessing, 

including image resizing, data augmentation, and 

class balancing, to optimize model training and 

improve generalization. Performance metrics such 

as accuracy, precision, recall, F1-score, and ROC-

AUC were utilized to assess model effectiveness. 

Among the evaluated architectures, MobileNetV2 

demonstrated the best performance with an 

accuracy of 97.51% and an AUC of 0.9941, 

highlighting its potential for reliable diagnostic 

applications. The results also emphasize the trade-

offs between sensitivity and specificity across 

models, offering useful insights for real-world 

deployment. This study underscores the importance 

of leveraging deep learning models in clinical 

diagnostics, particularly in environments with 

limited healthcare resources. Beyond evaluating 

models, the findings provide evidence-based 

recommendations for selecting efficient 

architectures that balance accuracy and 

computational efficiency. Future work will focus on 

integrating multimodal datasets, improving 

explainability, and validating these models in 

diverse clinical environments to ensure scalability, 

trust, and generalizability for global health 

applications. 

Keywords:  Pneumonia detection; deep learning 
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I. INTRODUCTION 

Pneumonia remains one of the leading causes of 

children's death worldwide, causing over 700,000 

deaths each year, with most of them in developing 

countries (UNICEF Data, 2024). In such resource-

limited areas, diagnosis of pneumonia is normally 

limited by access to professional radiologists and 

diagnostic infrastructure, leading to higher mortality 

rates from a very preventable condition (World 

Health Organization, 2017). To address this, the 

WHO through GAPPD (Integrated Global Action 

Plan for the Prevention and Control of Pneumonia 

and Diarrhea) increased its call for technological 

innovation to complement the traditional health 

measures such as immunization (World Health 

Organization, 2017). Similarly, UNICEF has 

highlighted the urgent need for technology-based 

solutions that give early diagnosis, especially for 

resource-limited environments (UNICEF Data, 

2024). 

Recent advances in deep learning bring huge 

opportunities for revolutionizing medical diagnosis, 

using deep learning architectures like VGG, ResNet, 

DenseNet, and Xception for the automatic and 

efficient analysis of chest X-ray images. However, 

the efficiency of such models has to be assessed with 

real epidemiological data in order to prove their 

applicability in a real-world clinical environment. 

Pneumonia cases always show huge 

fluctuations over time in Indonesia, especially for 

the under-five years children, normally called balita. 

According to data from the Indonesian Ministry of 

Health [3], the number of pneumonia cases peaked 

in February and March 2019, with more than 49,000 
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cases among balita afterwards decreased gradually 

along the year. Figure 1 presents the monthly 

distribution of pneumonia cases in 2019, showing 

the seasonal trends and the consistent burden of the 

disease. 

These statistics highlight the urgency for 

scalable diagnostic tools that offer accuracy in an 

effort to minimize mortality rates caused by 

pneumonia. Deep learning models, especially CNN-

based architectures, which are able to automatically 

detect pneumonia from chest X-ray images presents 

as one of the efforts toward early diagnosis and 

intervention. 

 
Figure 1. Monthly pneumonia cases in Indonesia (2019), 

categorized by age group (balita vs. >5 years old) 

(Kementrian Kesehatan RI, 2019). 

This study investigates different deep learning 

models for detecting the performance of pneumonia 

using chest X-ray images. The comparisons of their 

performances were done side by side using the 

performance metrics to evaluate the findings of each 

model for an overall idea included accuracy, 

precision, recall, F1-score, and AUC ROC. The 

significant contribution of this study is to provide 

guidelines on the selection of the most optimal deep 

learning models for clinical diagnostic applications 

and to contribute to the global effort to decrease 

pneumonia through technological innovation 

(Kementrian Kesehatan RI, 2019; UNICEF Data, 

2024; World Health Organization, 2017). 

The application of deep learning (DL) for 

pneumonia detection from chest X-ray (CXR) 

images has been widely explored. This section 

summarizes key contributions, highlighting 

methodologies, model architectures, and outcomes. 

The use of VGG-16 with neural networks has 

been demonstrated, showing its effectiveness in 

pneumonia detection (Kementrian Kesehatan RI, 

2019). CNNs have also been employed for 

classification, achieving high accuracy (Sharma & 
Guleria, 2023). Multiple deep learning models, 

including ResNet and DenseNet, have been 

compared to validate their efficacy in pneumonia 

diagnosis (Asnaoui et al., 2020). CNN architectures 

have been adapted for COVID-19 pneumonia 

detection, showcasing their versatility (Yue et al., 

2020). Pipelines have been optimized using 

compressed sensing techniques (Gabruseva et al., 

2020), and frameworks like Deep-Pneumonia have 

been introduced to enhance diagnostic outcomes 

(Islam et al., 2022). Gabruseva et al. applied 

advanced CNN strategies as part of the RSNA 

Pneumonia Detection Challenge, contributing 

significantly to the field (Bashar et al., 2021). 

Comprehensive frameworks for pneumonia 

detection, such as that by Barhoom and Abu Naser, 

have also demonstrated the potential of DL in 

clinical diagnostics (Szepesi & Szilágyi, 2022). 
The effectiveness of ensemble models has been 

highlighted, integrating diverse architectures for 

superior results (Ibrahim et al., 2024). Hybrid 

models combining VGG architectures with machine 

learning classifiers have also proven successful (Jain 

et al., 2020). Ensemble-based CNN techniques have 

achieved high diagnostic accuracy in various 

scenarios (Elshennawy & Ibrahim, 2020). Methods 

integrating multiple architectures have been shown 

to outperform individual approaches in robust 

evaluations (Yaseliani et al., 2022). 

Transfer learning has effectively addressed data 

scarcity issues. Pretrained models have been 

leveraged for efficiency (Saul et al., 2019), and deep 

CNNs have been applied to achieve state-of-the-art 

results (Kareem et al., 2022). Feature extraction 

methods have also demonstrated enhanced 

performance in pneumonia detection (Kundu et al., 

2021). Transfer learning has been critical in several 

applications, especially during the COVID-19 

pandemic . 

CNN architectures have been optimized for 

detecting both COVID-19 and general pneumonia 

cases (Jaiswal et al., 2019; Yue et al., 2020). 

Innovative feature extraction techniques have been 

proposed to improve diagnostic accuracy (Yaseliani 

et al., 2022). Lightweight and efficient models have 

also been developed, maintaining high accuracy 

while reducing computational demands (Gm et al., 

2021; Racic et al., 2021). Various preprocessing 

techniques, including data augmentation and feature 

scaling, have also contributed to improvements 

(Varshni et al., 2019).  

The importance of model selection and 

hyperparameter optimization has been underscored 

(Ibrahim et al., 2024; Kundu et al., 2021). Dataset 

variability has been highlighted as a significant 

factor influencing model performance (Jaiswal et al., 

2019). Insights into real-world applicability have 

been provided through extensive evaluations 

(Hashmi et al., 2020). Comparative investigations of 

advanced architectures such as Inception and 

Xception networks have yielded critical insights 

(Pant et al., 2020). 

Deep learning frameworks have been optimized 

to distinguish COVID-19 pneumonia from other 

types, demonstrating their adaptability (Jaiswal et 

al., 2019; Yue et al., 2020). Advanced techniques 
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have been explored to improve diagnostic accuracy 

under challenging conditions (Singh, 2021). 

Machine learning methods for pneumonia detection 

have been comprehensively reviewed (Yang & Mei, 
2022). Studies have also explored hybrid approaches 

integrating traditional classifiers with deep learning 

backbones (Jain et al., 2020; Puneet Gupta, 2021). 

Challenges such as data imbalance and 

overfitting persist in this field (Islam et al., 2022). 

Explainable AI has been proposed to enhance 

interpretability (Racic et al., 2021; Yaseliani et al., 

2022). Future research should focus on lightweight 

models and integrating diverse datasets for real-

world deployment. Additionally, enhancing cross-

platform compatibility and leveraging federated 

learning for decentralized datasets could be explored 

further (Barhoom et al., 2022). 

II. METHODS 

 

Fig. 2 Workflow of the Pneumonia Detection System 

To develop an effective pneumonia detection 

system, a comprehensive workflow was designed. 

This workflow consists of several interconnected 

stages, beginning with dataset acquisition, followed 

by preprocessing steps, model training, evaluation, 

and result analysis. Each stage plays a crucial role in 

ensuring accurate and reliable detection of 

pneumonia from chest X-ray images. 

2.1 Dataset Exploration 

The dataset used in this study was obtained from 

Kaggle’s "Chest X-Ray Images (Pneumonia)" 

repository (Paul Mooney, 2018; Rahman et al., 

2020). It consists of a total of 5,863 chest X-ray 

images, divided into two categories: normal and 

pneumonia. The dataset contains 1,583 images 

labeled as normal and 4,273 images labeled as 

pneumonia. These images are further divided into 

training, testing, and validation subsets, enabling 

robust training and evaluation of the models. 

 

 
Figure 3. Example of a normal chest X-ray 

 
Figure 4. Examples of chest X-rays with pneumonia, 

showing opacities and infiltrates 

Figures 3 and 4 illustrate examples of chest X-

rays from the dataset. Figure 3 shows a normal chest 

X-ray, where the lung fields are clear, with no visible 

signs of opacities or infiltrates, which are common 

indicators of pneumonia. Conversely, Figure 4 

presents examples of chest X-rays labeled as 

"pneumonia," displaying visible signs of infection, 

such as opacities and consolidations in the lung 

fields, characteristic of bacterial or viral pneumonia. 

2.2 Data Preprocessing 

The dataset was divided into three subsets: 70% 

for training, 20% for testing, and 10% for validation. 

This split ensured that the models were trained on a 

majority of the data while having sufficient data for 

testing and validation. 

To further enhance dataset diversity and reduce 

overfitting risks, basic augmentation techniques 

such as random rotations, flips, and brightness 

adjustments were applied. These augmentations 

helped the models generalize better to unseen data 

and improved their robustness. 

Additionally, all images were resized to a 

uniform dimension of 224x224 pixels to meet the 

input requirements of the deep learning 

architectures. This resizing step was essential to 

ensure consistency in input dimensions across all 

models and facilitated efficient training. 

Finally, to address class imbalance in the dataset, 

undersampling and oversampling techniques were 

employed. These balancing strategies ensured an 

equal representation of normal and pneumonia 

images in the training set, preventing model bias 

toward the majority class. 
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2.3 Model Training and Usage 

Ten state-of-the-art deep learning architectures 

were implemented to evaluate their performance in 

pneumonia detection. These architectures included 

VGG16, ResNet50, ResNet101, InceptionResNetV2, 

InceptionV3, MobileNetV2, DenseNet121,Xception, 

EfficientNetB0, and EfficientNetB5. Each model was 

initialized with pre-trained weights from ImageNet 

and fine-tuned on the pneumonia dataset. The training 

was conducted using a supervised learning approach, 

optimizing categorical cross-entropy as the loss 

function. The models were trained for 10 epochs with 

a batch size of 32, utilizing an Adam optimizer with 

a learning rate of 0.001. Early stopping was applied 

to prevent overfitting. 

2.4 Model Evaluation 

The performance of each model was evaluated 

using several metrics, including accuracy, precision, 

recall, and F1-score. Additionally, confusion 

matrices were generated to visualize the 

classification performance. Training and validation 

loss and accuracy curves were plotted to analyze the 

models’ learning progress over epochs. The results 

obtained from the evaluation metrics and confusion 

matrices were analyzed to compare the performance 

of the ten deep learning models. The analysis 

included identifying the model with the best balance 

of precision and recall and interpreting the results to 

understand the strengths and weaknesses of each 

architecture in detecting pneumonia from chest X-

ray images. 

2.5 Result Analysis 

The results obtained from the evaluation metrics 

and confusion matrices were analyzed to compare 

the performance of the ten deep learning models. 

The analysis included identifying the model with the 

best balance of precision and recall and interpreting 

the results to understand the strengths and 

weaknesses of each architecture in detecting 

pneumonia from chest X-ray images. 

2.6 Conclusions 

The conclusion section summarized the findings 

of the study, highlighting the best-performing 

model(s) and discussing the implications of the 

results for future research and clinical applications. 

Recommendations for potential improvements and 

extensions of the work were also provided. 

 

III. RESULTS AND DISCUSSION 

This section provides an evaluation of the ten 

deep learning models used for pneumonia detection, 

focusing on key metrics such as accuracy, precision, 

F1-score, and recall. The analysis highlights the 

strengths and limitations of each model, offering 

insights into their suitability for chest X-ray imaging 

tasks. 

3.1 Evaluation Metrics 

Table 1.  Evaluation Metrics Comparison Across All 

Models for Pnuemonia Detection 

No 

 

Comparative Table 

Model Accuracy Precision 
F1-

Score 
Recall 

1 VGG16 0,9507 0,9545 0,9412 0,9297 

2 ResNet50 0,9732 0,9486 0,9614 0,9768 

3 ResNet101 0,9655 0,941 0,9543 0,9706 

4 
InceptionRes

NetV2 
0,9579 0,9502 0,9502 0,9502 

5 InceptionV3 0,9195 0,8545 0,8754 0,9168 

6 
MobileNetV

2 
0,9751 0,9617 0,9628 0,9639 

7 
DenseNet12

1 
0,9617 0,9372 0,9465 0,9572 

8 Xception 0,9617 0,932 0,9359 0,9401 

9 
EfficientNet

B0 
0,9579 0,9231 0,9409 0,9652 

10 
EfficientNet

B5 
0,933 0,891 0,9125 0,9484 

 

The performance of the ten deep learning models 

was evaluated using four primary metrics: accuracy, 

precision, F1-score, and recall, as summarized in 

Table 1. Among these models, MobileNetV2 

achieved the highest accuracy of 97.5100% and F1-

score of 0.9628, showcasing its superior 

performance. ResNet50 demonstrated the highest 

recall of 0.9768, indicating its strong ability to 

correctly identify positive cases. On the other hand, 

InceptionV3 had the lowest accuracy of 92.0000%, 

reflecting its lower performance compared to other 

architectures. These metrics underscore 

MobileNetV2's ability to achieve a harmonious 

balance between sensitivity and precision, critical for 

reliable pneumonia detection in clinical settings. 
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3.2 Accuracy Comparison 

 
Figure 5. Accuracy comparison across models with 

MobileNetV2 achieving the highest score 

Table 2.  Evaluation Metrics Comparison Across All 

Models for Pnuemonia Detection 

No 

 

Comparative Table 

Model Accuracy 

1 VGG16 0,9507 

2 ResNet50 0,9732 

3 ResNet101 0,9655 

4 InceptionResNetV2 0,9579 

5 InceptionV3 0,9195 

6 MobileNetV2 0,9751 

7 DenseNet121 0,9617 

8 Xception 0,9617 

9 EfficientNetB0 0,9579 

10 EfficientNetB5 0,933 

 

The accuracy comparison among models is 

depicted in Figure 5 and Table 2, where 

MobileNetV2 distinctly outperforms others with an 

accuracy of 97.5100%, closely followed by 

ResNet50 at 97.3000%. The competitive accuracy 

levels of ResNet101 and InceptionResNetV2, both 

exceeding 95.0000%, further highlight the advanced 

capabilities of these architectures. In contrast, the 

underperformance of InceptionV3 at 92.0000% 

suggests potential limitations in its feature extraction 

or generalization capability for this specific dataset. 

These observations substantiate the conclusion that 

MobileNetV2 is optimally suited for this 

classification task. 

3.2 ROC Curve Analysis 

 
Figure 6. ROC curves for all models highlighting AUC 

performance. 

To further analyze the discriminative ability of 

each model, the ROC curves were generated as 

shown in Figure 6. MobileNetV2 exhibited an AUC 

(Area Under the Curve) of 0.9941, representing a 

near-perfect ability to differentiate between positive 

and negative cases. ResNet50 demonstrated a 

comparable AUC, reinforcing its robustness and 

effectiveness. Conversely, InceptionV3 recorded the 

lowest AUC of 0.9838, aligning with its overall lower 

metrics. This reinforces the exceptional utility of 

MobileNetV2 in achieving precise and reliable 

diagnostic outcomes. 

3.3 Confusion Matrix Analysis 

 
Figure 7. Confusion matrix for MobileNetV2 showing 

true and false predictions. 
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The confusion matrix for MobileNetV2, presented in 

Figure 7, provides granular insights into its 

classification performance. The model correctly 

identified 378 pneumonia cases (true positives) and 

129 normal cases (true negatives), with minimal 

misclassifications: 7 false positives and 8 false 

negatives. These results underscore the model’s high 

sensitivity and specificity, essential for minimizing 

diagnostic errors in real-world clinical applications. 

This performance highlights MobileNetV2's 

reliability in reducing false negatives, a critical 

factor in life-threatening conditions like pneumonia. 

3.4 Training Process Analysis 

 

Figure 8. Training and validation metrics for 

MobileNetV2 across epochs 

The training process of MobileNetV2, depicted in 

Figure 8, demonstrates consistent and robust 

improvement over epochs. The training accuracy 

steadily increased to approximately 96.4000%, 

while the validation accuracy remained above 

96.0000%, indicative of effective generalization to 

unseen data. The convergence of training and 

validation loss curves further emphasizes minimal 

overfitting, ensuring the model’s reliability in 

diverse clinical datasets. These trends validate the 

efficiency of the training regime employed and the 

architecture’s ability to adapt effectively to the task. 

IV. CONCLUSION 

This study highlights the pivotal role of deep 

learning in addressing global health challenges, 

particularly in diagnosing pneumonia from chest X-

ray images. Among the evaluated models, 

MobileNetV2 emerged as the optimal architecture, 

achieving the highest accuracy (97.5100%) and 

AUC (0.9941), alongside robust F1-score and 

balanced sensitivity and specificity. These findings 

emphasize MobileNetV2’s capability to deliver 

precise and reliable diagnoses, particularly in 

resource-constrained settings. 

By leveraging the "Chest X-Ray Images 

(Pneumonia)" dataset from Kaggle, this research 

contributes evidence-based insights into model 

performance, supporting the adoption of AI-driven 

diagnostics. The integration of such advanced 

technologies aligns with global health initiatives, 

such as those by WHO and UNICEF, to reduce 

preventable deaths through early and accurate 

disease detection. 

Future research should explore the integration 

of these models into real-world clinical workflows, 

addressing challenges such as interpretability, data 

privacy, and scalability. Moreover, extending the 

analysis to include multimodal datasets, such as 

combining X-ray images with patient metadata, 

could further enhance diagnostic accuracy. 

Collaboration with healthcare providers to validate 

these models on diverse populations and settings will 

be essential for ensuring their effectiveness and 

generalizability in real-world applications. 
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