

JURNAL EMACS
(Engineering, MAthematics and Computer Science) Vol.7 No.2 May 2025: 215-224

215

e-ISSN: 2686-2573

DOI:

10.21512/emacsjournal.v6i

3.11968

DOI: 10.21512/emacsjournal.v7i2.13932

DOI: 10.21512/emacsjournal.v6i3.11968

Copyright © 2025

Implementation of Microservices Architecture

in a Retail Web Application Using Apache Kafka

as a Message Broker

Stefanus Daeli1*, Kristian Juri Damai Lase2, Yo’el Pieter Sumihar3

1-3Informatics Study Programme, Faculty of Science and Computer,

Immanuel Christian University,

Yogyakarta, Indonesia 55571

stefanus.daeli@mail.ukrim.ac.id; kristian@ukrimuniversity.ac.id;

pieter.haro@ukrimuniversity.ac.id

*Correspondence: stefanus.daeli@mail.ukrim.ac.id

Abstract – Web-based applications are often initially

developed using monolithic architecture due to its

simplicity and ease of deployment. However, as

application complexity grows, monolithic systems

face critical limitations in scalability, flexibility, and

performance. This research applies a microservices

architecture to a Retail Web divided into four core

services: user, product, transaction, and notification

management. Apache Kafka is integrated as a

message broker to support asynchronous, real-time

communication across services. A total of 2,001

requests were recorded during system testing using

Prometheus. The srv_tulityretailaccounts service

achieved an average response time of 122.8 ms, and

the srv_tulityretailtransactions service maintained

188.1 ms with a 98% success rate. The

srv_tulityretailproducts service also demonstrated

stable performance with consistently low response

times and no error spikes. Meanwhile, the

srv_tulityretailnotifications service showed the

highest efficiency with an average response time of

28.5 ms, CPU usage at 12.75% (1.53 of 12 cores), and

memory usage at 2.07 GB (56.5%) of 3.66 GB.

Throughout testing, no service exhibited resource

saturation or degradation, even under concurrent

load conditions. This confirms the system’s horizontal

scalability, where each service can independently

scale without impacting others. Overall, the

microservices approach has proven effective in

enhancing performance, modularity, and production-

readiness, while laying a strong foundation for

continuous integration, deployment automation, and

future feature expansion.

Keywords: Architecture; Microservices; Apache

Kafka; Prometheus; Retail Web

I. INTRODUCTION

The current landscape of software development is

evolving rapidly due to increasing business demands

(Elgheriani et al., 2022). Many companies are

transitioning from monolithic to microservices

architectures, although the majority are still in the

early phases of adoption (Baboi et al., 2019). While

monolithic architectures provide simplicity and

efficiency for small-scale applications, they struggle

to support scalability and continuous deployment as

application complexity grows. In contrast,

microservices enable independent scaling of services,

greater flexibility, and faster development iterations

(Kamisetty et al., 2025; Alchuluq & Nurzaman,

2021).

Several previous studies have analyzed

performance comparisons between monolithic and

microservices architectures, concluding that

monolithic systems are inadequate for large-scale

applications requiring rapid development cycles and

high scalability (Tapia et al., 2020). However, many

of these studies focus on theoretical advantages

without demonstrating real-world implementation

involving the integration of message brokers and

containerization tools.

This study addresses that gap by implementing a

microservices architecture in a retail web application

using Apache Kafka as a message broker and Docker

for service containerization. Unlike prior work that

remains theoretical or single-service focused, this

research presents an end-to-end integration across

multiple services, measuring how the adoption of

Kafka improves communication, data consistency,

and system performance. We also utilize the Django

framework to demonstrate how high-level web

mailto:stefanus.daeli@mail.ukrim.ac.id;kristian@ukrimuniversity.ac.id;
mailto:pieter.haro@ukrimuniversity.ac.id
mailto:stefanus.daeli@mail.ukrim.ac.id

216 JURNAL EMACS (Engineering, MAthematics and Computer Science) Vol.7 No.2 May 2025: 215-224

technologies can efficiently support modular service

development.

II. METHODS

2.1 Microservices Architecture

Microservices are standalone components that

align with business domain logic and can be deployed

without affecting other parts of the system. A service

encapsulates functionality and makes it accessible to

other services (Newman, 2021). Because

microservices are independent, software development

teams can develop specific microservices in different

programming languages to take advantage of

particular algorithms or libraries, thereby providing

alternative options for innovation, cost optimization,

and development time efficiency (Velepucha &

Flores, 2023). Figure 1 illustrates how microservices

architecture is built.

Figure 1. Illustration of microservices architecture

In Figure 1, the microservices architecture is

shown to consist of three distinct services, each with

its own database. Each service has the capability to

send messages (push messages) to the message

broker. These messages are stored by the message

broker, while the client acts as the message receiver

(pull message).

2.2 Django Framework

Django is a powerful framework ideal for

developers aiming to create contemporary and reliable

web applications efficiently with less code (Vincent,

2022). It is available for free and is open source

(Ranjan, 2021). With these advantages, the

application development method in this study adopts

a service-based approach, where each service is

developed using the Django framework.When

developing any Django project, you will always work

with models, views, templates, and URLs, which are

collectively known as the MVT architecture (Melé &

Melchiorre, 2024).

Figure 2. MVT Architecture

In Figure 2, the workflow of the MVT (Model-

View-Template) architecture in Django is shown,

starting from the user who sends a request through a

URL. Django then matches the URL and forwards it

to the appropriate View. The View is responsible for

processing the application logic, including retrieving

or manipulating data through the Model, which is

directly connected to the database. Once the data is

obtained, the View sends it as context to the Template

to be rendered into an HTML page. The Template then

generates the final display, which the View returns to

the user in the form of an HTTP Response. This flow

demonstrates how Django separates responsibilities

between data, logic, and presentation in a structured

and efficient manner.

To develop an API (Application Programming

Interface), Django REST Framework (DRF) is

required. DRF includes a web-based interface for

interacting with APIs, which is highly useful for

testing purposes*. Django adopts the MVS (Model,

View, and Serializers) architecture specifically for

API development. Its workflow is similar to

MVT.however, the role of the template is replaced by

serializers, which convert model data to JSON

(JavaScript Object Notation) format and vice versa.

The architecture is illustrated in Figure 3.

Figure 3. MVS Architecture

2.3 Message Broker

Message broker, or message-oriented

middleware (MOM), act as a bridge that links various

systems, allowing them to communicate despite

differences in language or architecture, and without

needing internal knowledge of one another (Henrique

et al., 2021). This research employs Apache Kafka to

handle message brokering, as it ensures dependable

communication even in the presence of system

failures (Oliveira, 2023).

Figure 4. Message Broker Illustration

217 Implementation of Microservices Architecture in a Retail Web Application… (Stefanus Daeli, et.al)

Figure 4 demonstrates how a message broker is

structured, with Producer A and Producer B

publishing messages to predefined topics like Topic

A, B, and C. These messages can then be pulled by

Consumer A and Consumer B according to the topics

they subscribe to. This architecture enables

decentralized communication between message

producers and consumers without requiring direct

connections, thereby improving the system’s

scalability and flexibility.

2.4 Containerization

Docker functions as an open-source platform that

enables the packaging of applications and their

dependencies in the form of isolated containers (Miell

& Sayers, 2019). Containerization with Docker is

driven by the need for increasingly shorter

development cycles and cost savings in infrastructure

(Combe et al., 2016). Docker is considered fairly

secure even with its default configuration (Bui, 2015).

Despite these advantages, most developers do not use

this tool in their development process (Reis et al.,

2022). Docker has a general architecture as illustrated

in Figure 5.

Figure 5. Docker Illustration

In Figure 5, the process starts from docker-

compose, which instructs Docker Daemon to build

and run containers from the available images. There

are two images involved: Postgre and App, each run

as a separate container (db_container and

app_container, respectively). All these components

are launched automatically and in a coordinated

manner through the docker-compose.yml

configuration file.In the context of this architecture,

the Docker registry acts as a repository where images

like Postgre can be pulled (downloaded) or pushed

(uploaded) before being run on the Docker Host. The

Postgre image is a public image from Docker Hub, so

the Docker Host will automatically pull the image

from the registry when executing docker-compose up,

if it is not already available locally. Meanwhile, the

App image is built locally from the Dockerfile within

the project.

2.5 Testing And Monitoring Using Prometheus

To ensure that the implementation of

microservices performs reliably under operational

conditions, this study includes a dedicated testing

phase focusing on performance, scalability, message

flow, and system resource monitoring. The testing

was carried out using Prometheus, an open-source

monitoring and alerting toolkit designed for reliable

metrics collection. Prometheus is adept at collecting

and storing time series data with timestamps, using a

pull model over HTTP (Elraldi, 2025).

The first part of the testing involved performance

testing, including:

1. Endpoint availability (endpoint_testing).

2. HTTP status codes (status_code).

3. Response time measurements (response_time).

4. Scalability analysis under concurrent request

conditions

These metrics were collected from Django-based

microservices through Prometheus' HTTP exporter

endpoints.

The second stage focused on stream monitoring,

where Kafka topics and message counts were

analyzed. This was accomplished using Kafka

Exporter, which allows Prometheus to scrape metrics

related to Kafka consumers and listeners, ensuring

that message transmission between services is

occurring without data loss or delay.

Additionally, system resource monitoring was

performed to observe CPU usage, memory

consumption, and disk I/O in each service container.

All metrics were visualized using the Prometheus

dashboard, making it easier to interpret data patterns

and anomalies.

This testing strategy provides not only raw data

but visual insights, ensuring clarity in evaluation. As

emphasized by Leppänen (2021), “in visual

monitoring, the monitoring of targets must have a

clear meaning, and the visualization must be easy to

understand.”

218 JURNAL EMACS (Engineering, MAthematics and Computer Science) Vol.7 No.2 May 2025: 215-224

Testing and monitoring were critical for

validating the overall system. According to Pivotto &

Brazil (2023), “the big advantage of testing lies in

understanding system performance.” Moreover, since

“an application will inevitably have errors or bugs”

(Prasetyo & Silfianti, 2023), ongoing monitoring is

essential to ensure stability. Finally, this approach

addresses the importance of "scalability and

performance optimization as critical aspects of

modern web application development” (Shetiya,

2025), proving that the proposed architecture can

meet increasing operational demands while

maintaining performance.

III. RESULTS AND DISCUSSION

The microservices architecture was successfully

implemented in a retail application. To ensure that the

idea was valid, here are the results of each successful

stage.

Table 1. Services
Role App Name Language Port DB Port

Services

srv_tulityretailacco

unts

Python

(Django

Framework)

8011 5433/5432

srv_tulityretailprod

ucts
8013 5433/5432

srv_tulityretailtrans

actions
8014 5433/5432

srv_tulityretailnotif

ications
8012 5433/5432

Client
Microclient_tulityr

etail
8001 -

In Table 1, there are four services, each represented

by a project developed with the Django framework.

Each project is contained within a single container and

has its own database, which is also contained within a

single container. All services use PostgreSQL. To run

all services on localhost simultaneously, the ports

need to be differentiated between services. Figures *

to * show the results of running services, ensuring that

each service is running properly.

Figure 6. Results of running srv_tulityretailaccounts

Figure 7. Results of running srv_tulityretailproducts

Figure 8. Results of running srv_tulityretailtransactions

Figure 9. Results of running srv_tulityretailnotifications

Containerization is performed using Docker. In

figure 10, it can be seen that each service has an app

container and a db container. All containers were

successfully launched, as shown in figures 10 and 11.

Figure 10. List of container services in Docker CLI

Figure 11. Display active containers via bash

Services Models

srv_tulityretailaccounts User

srv_tulityretailproducts

Product

ProductCategory

ProductUnit

ProductUnitLevel

ProductUnitPrice

ProductStock

srv_tulityretailtransactions

SalesTransaction

SalesTransactionDetail

PurchaseTransaction

PurchaseTransactionDetail

srv_tulityretailnotifications Notification

219 Implementation of Microservices Architecture in a Retail Web Application… (Stefanus Daeli, et.al)

After containerization, each service began to be

developed. Each service has specific tasks and

different models, as shown in Table 2.

Table 2. Models

The API was developed with the help of Django's

rest_framework. Here, serializers are needed to

convert model data into JSON and then send it to

views. The logic and validation of each function will

be performed in the view and then sent to URLs as

endpoints that can be accessed for testing or

consumed by services and clients. This flow can be

seen in Figure 3.

The JWT (JSON Web Token) authentication is

implemented to maintain the security of each

endpoint. This load is allocated to the

srv_tulityretailaccounts service. This means that each

endpoint (except for the login endpoint) cannot be

accessed without logging in first. The results can be

seen in figures 12 to 14.

Figure 12. Product display before login

Figure 13. Login successful display

Figure 14. Product display after logging in

All endpoints from services (except

srv_tulityretailaccounts) use viewsets from Django.

With the viewsets class, CRUD becomes automatic,

and testing is also easier, as shown in the figure 15.

Figure 15. Data input display after applying class viewsets

Next is sending messages to Kafka. To do this,

a separate docker-compose is required that has two

containers, namely Kafka and Zookeeper. This makes

Kafka a shared Kafka because it is connected to each

service through the same network. The advantage is

that microservices only need one Kafka to serve all

services. The next step is to configure settings.py by

adding Kafka Bootstrap Servers to specify the Kafka

bootstrap address connected to the previously

initialized environment. This connection is called

Environment Variable Injection. This step can be seen

in figure 16.

220 JURNAL EMACS (Engineering, MAthematics and Computer Science) Vol.7 No.2 May 2025: 215-224

Figure 16. Kafka Shared Process

Here, the next view role is needed. Through the

send_to_kafka function, the view creates a topic and

then sends the data as a message to the function with

the same name in the send_to_kafka.py file. Then, it

continues by sending the message to its final

destination, namely the Kafka broker, to be consumed

by other services or clients as consumers. The results

of messages that have been successfully sent can be

seen in the figure 17.

Figure 17. Display of messages successfully sent to the

Kafka broker

To consume Kafka messages, the same

configuration is performed by services that want to

receive messages, with a slight difference in function.

As shown in the figure 18, there is an additional

command for listening from Kafka to receive

messages.

Figure 18. Kafka listening from messages

When the producer service fails, messages are not

delivered to the consumer because there is no service

to publish the messages. However, when the

consumer service fails temporarily, messages sent by

the producer remain stored in the Kafka topic and will

be automatically delivered once the consumer

becomes active again and starts listening. This

behavior demonstrates that Kafka has a reliable and

fault-tolerant design and is capable of maintaining

message integrity between services.

There are three main types of testing in this study,

namely: performance testing, stream monitoring, and

system resource monitoring, which were conducted

using Prometheus, Kafka Exporter, and Docker

Resource Usage. Each testing phase was designed to

evaluate key metrics such as response time, number of

requests, message flow, and resource consumption.

The application was tested under various

concurrent request scenarios. The system

demonstrated stable responses across all services,

with average response times and total request volumes

recorded through metrics from Prometheus.

Figure 19. Average Response Time

srv_tulityretailaccounts endpoints

In Figure 19, based on the average response time

test results for the srv_tulityretailaccounts service, it

is evident that most endpoints perform well with

response times below 200 ms. The POST /logout,

GET /user_delete, and GET /register endpoints are the

fastest with response times of around 3–9 ms,

indicating lightweight and efficient processes.

Conversely, PUT /user_update shows the highest

response time of ~568 ms. The POST /login and GET

/user_list endpoints also take a little longer, around

246 ms and 198 ms respectively, but are still within

reasonable limits. Meanwhile, other endpoints such as

POST /register and GET /user_detail show stable

performance. Overall, this service has demonstrated

fairly optimal performance.

Figure 20. Average Response Time srv_tulityretailproducts

endpoints

In Figure 20, the response time test results show

that the GET product-list endpoint is the slowest with

an average time of 210 ms, followed by GET product-

detail at 134 ms and PUT product-detail at 116 ms.

221 Implementation of Microservices Architecture in a Retail Web Application… (Stefanus Daeli, et.al)

Meanwhile, the POST product-list endpoint, which

handles product additions, only requires 81 ms, and

DELETE product-detail is the fastest at 25 ms. This

difference indicates that data requests (especially

lists) tend to be heavier.

Figure 21. Average Response Time

srv_tulityretailtransactions endpoints

Meanwhile, in Figure 21, the highest response

time was recorded at the GET

purchase_transaction_detail-list endpoint at 254 ms

and GET sales_transaction_detail-list at 207 ms,

indicating that detailed transaction data requests take

longer, possibly due to the large amount of data and

the complexity of joints between tables. The POST

sales_transaction-list endpoint showed good

performance at 98 ms, while the PUT

sales_transaction_detail-detail endpoint was slightly

higher at 131 ms. The fastest was the DELETE

sales_transaction_detail-detail endpoint at just 16 ms.

These results indicate that while transactions are a

complex process, the performance of most endpoints

remains responsive and efficient.

Figure 22. Average Response Time

srv_tulityretailnotifications endpoints

In Figure 22, the response time for the

srv_tulityretailnotifications service shows excellent

performance, with response times between endpoints

ranging from 29 ms to 50 ms. The PUT notification-

detail endpoint was the fastest at 29 ms, followed by

DELETE (37 ms), POST (40 ms), GET notification-

list (45 ms), and GET notification-detail (49 ms). All

endpoints responded in under 50 ms, indicating that

the system is running efficiently without any

significant bottlenecks.

Figure 23. Messages by kafka topic

In figure 23, during testing, messages sent to the

Kafka topic were successfully tracked with the event

register receiving 1 message, newproduct-event 2

messages, and the most numerous newtransaction-

event messages totaling 8.

Scalability testing was conducted using test data.

A total of 2,001 requests were made during the two-

hour test. Figure 24 shows the average response time

for the two hours.

Figure 24. response time fluctuations for all requests

Overall, the response time for all requests was

very fast and stable, especially after 1:30 a.m., with an

average of less than 30 ms. The initial spike to 51.6

ms was still within reasonable limits and did not

indicate a serious bottleneck. This indicates that the

backend system performed efficiently and

responsively throughout the monitoring period.

Figure 25. Status Code Monitoring

Status code monitoring is also performed. In

image 25, the status code that frequently appears on

222 JURNAL EMACS (Engineering, MAthematics and Computer Science) Vol.7 No.2 May 2025: 215-224

the client application has been successfully

implemented.

Figure 26. Container CPU Usage

Figure 27. Container Memory Usage

In figures 26 and 27, container performance

during testing shows that CPU and memory usage is

very healthy and efficient. Both CPU and memory are

still far from their maximum limits, so the system is

ready to handle additional workloads without the need

for emergency scaling. This supports the previous

finding that response times are low and stable because

there is no resource pressure.

Finally, the project client (Tulity Retail)

consumes APIs from all services. All logic and data

modification processes are performed in services. As

a client, it only performs API hits. The user interface

of Tulity Retail can be seen in figures 28 to 30.

Figure 28. Login layout

Figure 29. Dashboard layout

Figure 30. Products layout

Although the application demonstrates excellent

performance and ease of maintenance, there is a clear

trade-off in terms of increased complexity and

resource usage. Each service runs in its own container,

requiring more memory and CPU resources. This

research also requires significant engineering effort,

including the development of five separate projects—

four backend services and one frontend client,

container orchestration, Kafka integration, and the

implementation of a monitoring system using

Prometheus.

Although complexity increases, the benefits

gained—such as modularity, error isolation, and

system visibility—provide long-term value,

especially in environments requiring high scalability.

However, development teams looking to adopt this

architecture must consider the additional operational

and technical overhead it entails.

IV. CONCLUSION

Based on the results of monitoring and

visualization of Prometheus metrics, all endpoints of

the srv_tulityretailaccounts service showed stable

response performance with an average time below the

300 ms threshold, with an average response time of

around 122.8 ms and a total number of hits reaching

5,769 requests during the testing period. The

endpoints with the highest traffic (/users/ and

/users/<id>/) have a 100% HTTP 200 status

dominance, indicating successful handling of user

data requests. This demonstrates that the system

design and API structure implemented are functioning

in line with the expected usage patterns.

The srv_tulityretailtransactions service also

performed optimally despite fluctuations in response

223 Implementation of Microservices Architecture in a Retail Web Application… (Stefanus Daeli, et.al)

time, particularly at the /purchases/ and /sales/

endpoints, with an average time of 188.1 ms. During

testing, HTTP 200 status dominated 98% of total

requests, and there were no significant errors that

disrupted transactions. The use of Kafka as a message

broker proved to run smoothly without bottlenecks,

effectively supporting the asynchronous architecture

between microservices.

Meanwhile, on the srv_tulityretailnotifications

service, the system showed exceptional efficiency

with very fast response times, averaging only 28.5 ms

and a peak of 51.6 ms. CPU usage reached only

12.75% of the total capacity of 1200% (12 cores), and

memory usage remained stable at 2.07 GB out of 3.66

GB (approximately 56.5%). No memory spikes or

leaks were detected during the observation period of

over 50 minutes, reinforcing the claim that this service

is lightweight and scalable.

Overall, the implementation of the microservices

architecture proved successful in quantitatively

addressing the challenges of scalability and reliability

in retail systems. The Prometheus-based testing

method provides accurate performance indicators,

showing that the system can handle thousands of

requests with low response times and light system

load. This success opens up significant opportunities

for further development, including feature expansion,

adaptation to larger production loads, and the

adoption of CI/CD-based deployment automation in

the future.

REFERENCES

Alchuluq, L. M., & Nurzaman, F. (2021). ANALISIS

PADA ARSITEKTUR MICROSERVICE

UNTUK LAYANAN BISNIS TOKO ONLINE

(Vol. 22, Issue 2).

Baboi, M., Iftene, A., & Gîfu, D. (2019). Dynamic

microservices to create scalable and fault

tolerance architecture. Procedia Computer

Science, 159, 1035–1044.

https://doi.org/10.1016/j.procs.2019.09.271

Bui, T. (2015). Analysis of Docker Security.

http://arxiv.org/abs/1501.02967

Combe, T., Martin, A., & Di Pietro, R. (2016). To

Docker or Not to Docker: A Security

Perspective. IEEE Cloud Computing, 3(5), 54–

62. https://doi.org/10.1109/MCC.2016.100

Dewandra Sapto Prasetyo, & Silfianti, W. (2023).

Analisis Perbandingan Pengujian Manual Dan

Automation Testing Pada Website E-

Commerce. Jurnal Ilmiah Teknik, 2(2), 127–

131. https://doi.org/10.56127/juit.v2i2.516

Elgheriani, N. S., Ali, N., & Ahmed, S. (2022).

Microservices VS. Monolithic Architechture

[The Differential Structure Between Two

Architechture] Ministry of Technical and

Vocation Education, Libya.

http://dx.doi.org/10.47832/2717-8234.12.47

Henrique, G., Oliveira, S., & Duarte, H. (2021).

Development of a Message Broker Volume 1

Internship Report in the context of the Masters

in Informatics Engineering, Specialization in

Engenharia de Software advised by Professor

Vasco Pereira and engineer. 1.

Kamisetty, A., Narsina, D., Rodriguez, M., &

Kothapalli, S. (2025). Microservices vs .

Monoliths : Comparative Analysis for Scalable

Software Architecture Design. December 2023.

https://doi.org/10.18034/ei.v11i2.734

Leppänen, T. (2021). Data visualization and

monitoring with Grafana and Prometheus.

Information and Communications Technology,

49.

Miell, I., & Sayers, A. (2019). Docker in Practice,

Second Edition. Manning.

https://books.google.co.id/books?id=SzgzEAA

AQBAJ

Mohammed Daffalla Elradi. (2025). Prometheus &

Grafana: A Metrics-focused Monitoring

Stack. Journal of Computer Allied

Intelligence(JCAI, ISSN: 2584-2676), 3(3), 28-

39.

Newman, S. (2021). Building Microservices:

Designing Fine-Grained Systems. O’Reilly

Media.

https://books.google.co.id/books?id=ZvM5EA

AAQBAJ

Ranjan, A. (2021). Building Websites with Django:

Build and Deploy Professional Websites with

Python Programming and the Django

Framework (English Edition). Bpb

Publications.

https://books.google.co.id/books?id=SWEeEA

AAQBAJ

Pivotto, J., & Brazil, B. (2023). Prometheus: Up \&

Running. O’Reilly Media.

https://books.google.co.id/books?id=N6-

3EAAAQBAJ

Reis, D., Piedade, B., Correia, F. F., Dias, J. P., &

Aguiar, A. (2022). Developing Docker and

Docker-Compose Specifications: A Developers’

Survey. IEEE Access, 10.

https://doi.org/10.1109/ACCESS.2021.313767

1

Shethiya, A. S. (2025). Scalability and Performance

Optimization in Web Application Development.

http://arxiv.org/abs/1501.02967
https://doi.org/10.1109/MCC.2016.100
https://doi.org/10.56127/juit.v2i2.516
https://books.google.co.id/books?id=SzgzEAAAQBAJ
https://books.google.co.id/books?id=SzgzEAAAQBAJ
https://books.google.co.id/books?id=N6-3EAAAQBAJ
https://books.google.co.id/books?id=N6-3EAAAQBAJ
https://doi.org/10.1109/ACCESS.2021.3137671
https://doi.org/10.1109/ACCESS.2021.3137671

224 JURNAL EMACS (Engineering, MAthematics and Computer Science) Vol.7 No.2 May 2025: 215-224

Journal of Science and Technology Computer

Science & Information Technology, 2(1), 1–7.

https://creativecommons.org/licenses/by/4.0/de

ed.en

Tapia, F., Mora, M. ángel, Fuertes, W., Aules, H.,

Flores, E., & Toulkeridis, T. (2020). From

monolithic systems to microservices: A

comparative study of performance. Applied

Sciences (Switzerland), 10(17).

https://doi.org/10.3390/app10175797

Velepucha, V., & Flores, P. (2023). A Survey on

Microservices Architecture: Principles, Patterns

and Migration Challenges. IEEE Access,

11(August), 88339–88358.

https://doi.org/10.1109/ACCESS.2023.330568

7

Vincent, W. S. (2022). Django for Professionals.

Independently Published.

https://books.google.co.id/books?id=0uqjDwA

AQBAJ

Oliveira, I. G. (2023) 'Arquitetura escalável de

streaming de dados de API utilizando apache

Kafka', Universidade Federal do Rio Grande do

Norte.

https://repositorio.ufrn.br/handle/123456789/5

3384v

https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en
https://repositorio.ufrn.br/handle/123456789/53384v
https://repositorio.ufrn.br/handle/123456789/53384v

