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Abstract –  Imbalanced data is a common and 

significant challenge in classification problems, 

where standard models tend to be biased 

toward majority classes, leading to poor 

detection of minority instances. This paper 

presents a comprehensive comparative study of 

Light Gradient Boosting Machine (LightGBM) 

and eXtreme Gradient Boosting (XGBoost) 

models, enhanced with cost-sensitive learning 

to address class imbalance at the algorithmic 

level. The objective is to evaluate the impact of 

cost-sensitive loss adjustments on overall model 

performance using various evaluation metrics. 

Experimental results show that both models 

achieved high cross-validation and test 

accuracies, with LightGBM and XGBoost 

recording over 99.9% accuracy. However, only 

cost-sensitive LightGBM achieved perfect 

scores in precision, recall, and F1-score, 

indicating its superior ability to handle minority 

class identification effectively. In contrast, 

XGBoost exhibited noticeably lower recall and 

F1-score despite similar accuracy, reflecting 

inherent limitations in sensitivity to minority 

instances. Models without cost-sensitive 

learning demonstrated further drops in 

performance across minority-related metrics. 

The findings suggest that cost-sensitive 

LightGBM is a more robust and reliable 

solution for imbalanced classification tasks, 

outperforming both its baseline and the cost-

sensitive XGBoost variant. This approach is 

particularly beneficial for critical real-world 

applications such as fraud detection, 

cybersecurity, and medical diagnostics, where 

class imbalance is prevalent and 

misclassification costs are high. 
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I. INTRODUCTION 
 

The rapid advancement of machine learning 

(ML) technologies has revolutionized a wide 

range of application domains, including 

healthcare, manufacturing, finance, 

cybersecurity, and more. These advances have 

enabled the development of intelligent systems 

that can make predictions, detect anomalies, 

and support decision-making processes with 

high efficiency and precision. However, the 

success of such systems largely depends on the 

quality and structure of the data used during 

training. In practice, real-world datasets often 

exhibit imperfections such as noise, missing 

values, and, significantly, class imbalance is a 

condition where certain classes have 

significantly fewer instances than others. 

Data imbalance poses a serious challenge in 

supervised learning, especially in classification 

problems, where the model tends to be biased 

towards the majority class due to its dominance 

in the dataset. This often results in poor 

performance on minority classes, which may 

represent critical outcomes such as fraudulent 

transactions, rare diseases, or defective 

components. The issue is further exacerbated 

when conventional accuracy metrics are used, 
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which can misrepresent model effectiveness in 

imbalanced settings by favoring the majority 

class (Spelmen & Porkodi, 2018). 

To address this issue, various strategies 

have been proposed. At the data level, 

resampling techniques such as oversampling 

(e.g., SMOTE) and undersampling aim to 

balance the class distribution by either 

duplicating or synthetically generating minority 

instances, or by removing majority class 

examples (Altalhan et al., 2025). While these 

methods can improve class balance, they may 

introduce overfitting (in the case of 

oversampling) or lead to information loss (in 

undersampling), particularly in high-

dimensional data. (Zhao et al., 2024) conducted 

research on addressing data imbalance by 

combining LightGBM with the SMOTE 

oversampling technique. 

At the algorithmic level, cost-sensitive 

learning has emerged as a powerful solution. 

Rather than modifying the data, this approach 

embeds the imbalance handling directly into the 

learning algorithm by assigning higher 

misclassification costs to the minority class. 

This way, the model is encouraged to pay more 

attention to underrepresented classes during 

training, improving recall and overall fairness. 

Cost-sensitive methods are especially appealing 

in domains where data integrity must be 

preserved, or where synthetic generation of data 

may be impractical or ethically questionable 

(Araf et al., 2024). 

Simultaneously, the rise of ensemble-based 

algorithms has significantly enhanced 

predictive modeling capabilities. Among them, 

the Light Gradient Boosting Machine 

(LightGBM), developed by Microsoft, has 

shown remarkable performance in both speed 

and accuracy, particularly in large-scale, high-

dimensional datasets. LightGBM builds upon 

the Gradient Boosting Decision Tree (GBDT) 

framework but introduces innovations such as 

leaf-wise tree growth, Histogram-based 

splitting, Gradient-based One-Side Sampling 

(GOSS), and Exclusive Feature Bundling 

(EFB). These optimizations allow it to handle 

massive datasets with reduced computational 

complexity and enhanced accuracy (Ke et al., 

2017). 

Despite its proven strength, LightGBM 

does not natively include mechanisms to handle 

class imbalance, often relying on external 

preprocessing or parameter tuning. While 

researchers have attempted to combine it with 

resampling techniques, the integration of cost-

sensitive learning directly into LightGBM’s 

objective function remains relatively 

underexplored. Such a combination has the 

potential to harness the strengths of both 

approaches: the structural efficiency of 

LightGBM and the class-awareness of cost-

sensitive optimization. 

LightGBM is an implementation of the 

gradient boosting decision tree (GBDT) 

technique optimised for computational 

efficiency and scalability. Different from 

traditional approaches such as XGBoost or 

Random Forest, LightGBM uses leaf-wise tree 

growth technique with depth limitation, which 

enables the formation of more complex yet 

efficient decision trees. In addition, features 

such as Histogram-based Decision Tree, 

Gradient-based One-Side Sampling (GOSS), 

and Exclusive Feature Bundling (EFB) make 

LightGBM excel at processing big data and 

handling sparsity. 

These limitations motivate the need for an 

improved approach that incorporates class 

imbalance handling directly into the learning 

process  (Sadig et al., 2025). Therefore, this 

study aims to investigate a cost-sensitive 

adaptation of LightGBM to address 

performance degradation caused by class 

imbalance. We proposes a hybrid framework 

that integrates cost-sensitive learning with 

LightGBM to effectively tackle class imbalance 

in supervised classification tasks. 

Handling class imbalance in machine 

learning has been extensively studied, with 

various strategies developed to address the issue 

at different stages of the learning pipeline. 

According to (Haixiang et al., 2017), data 

imbalance introduces bias in model training and 

may lead to underperformance on minority 

classes, especially in high-stakes domains such 

as fraud detection and medical diagnosis. 

Data-level methods, including 

oversampling and undersampling, have been 

widely used due to their simplicity and ease of 

integration. Oversampling techniques like 

SMOTE generate synthetic data points to 

augment the minority class, while 

undersampling reduces the number of instances 

in the majority class to balance the dataset. 

(Jeong et al., 2022) emphasize that while these 
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methods can improve balance, they may also 

introduce overfitting (in the case of 

oversampling) or information loss (in 

undersampling). 

On the other hand, cost-sensitive learning 

offers a model-centric approach that modifies 

the learning algorithm itself to account for class 

imbalance. Rather than adjusting the dataset, 

this method assigns higher misclassification 

penalties to minority class samples, thus forcing 

the model to treat them with greater importance 

during optimization. (Mienye & Sun, 2021) 

show that cost-sensitive learning improves 

classification fairness and robustness across 

several imbalanced datasets. Cost-sensitive 

learning is a widely recognized and effective 

approach for handling imbalanced data in 

cybersecurity applications, as it enables models 

to focus on minority classes without synthetic 

data generation or resampling. This approach 

helps maintain data integrity while improving 

detection rates of rare but critical intrusion 

events, a challenge extensively discussed in 

recent literature (Liu et al., 2021). 

In recent years, ensemble models have 

gained prominence for their ability to produce 

robust and accurate predictions. Among them, 

LightGBM stands out due to its efficiency in 

handling large and high-dimensional data. It 

adopts techniques such as leaf-wise tree growth 

with depth constraint, gradient-based one-side 

sampling (GOSS), and exclusive feature 

bundling (EFB) to accelerate training while 

maintaining high accuracy. (Liao et al., 2022; 

Wang et al., 2022; Zhang & Gong, 2020) 

highlight LightGBM’s advantages in speed, 

scalability, and its suitability for deployment in 

real-time systems. 

While LightGBM has been explored in 

various contexts, its application in combination 

with cost-sensitive learning for class imbalance 

remains relatively underexplored. Previous 

studies primarily focus on tuning 

hyperparameters or integrating with 

oversampling methods, leaving a gap in 

research for integrating cost-based 

modifications directly into LightGBM’s 

training process. 

This study contributes to this growing body 

of work by presenting a novel integration of 

cost-sensitive learning with LightGBM, aiming 

to improve model performance on imbalanced 

datasets without altering the data distribution. 

II. METHODS 

 

 
Figure 1 Research Flow 

 

The flow of this research shown in Figure 

1. Research starts with data collection 

 

2.1 Dataset 

This research used Knowledge Discovery 

and Data Mining Tools Competition or often 

called KDD99 dataset. The dataset is pubnlicly 

accessible through the UCI Machine Learning 

Repository or Kaggle. The dataset accessed by 

downloading the official version from 

https://kdd.ics.uci.edu/databases/kddcup99/kdd

cup99.html. KDD99 is a dataset for network 

intrusion detection. This dataset is highly 

imbalanced, with 23 labels. Table 1 shows 

labels and amount of data form each label. 

Table 1. KDD99 Label 

Label Value Counts 

Smurf  280790 

Neptune 107201 

Normal 97278 

Back 2203 

Satan 1589 

Ipsweep 1247 

Portsweep 1040 

Warezclient 1020 

Teardrop 979 

Pod 264 

Nmap 231 

Guess_passwd 53 

Buffer_overflow 30 

Land 21 

Warezmaster 20 

Imap 12 

Rootkit 10 

Loadmodule 9 

ftp_write 8 

Multihop 7 

Phf 4 

Perl 3 

Spy 2 

2.2 Data Preprocessing 

Preprocessing steps that have been done in 

this research are one hot encoding, label 

encoding, and data splitting. Columns that 

through one hot encoding steps are 

‘protocol_type’, service’, and ‘flag’. 
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Protocol_type has 3 types, service has 66 types, 

and flag has 11 types.  

The “label” column, which indicates the 

class of the data, is the only column that 

underwent label encoding in this research. 

Label encoding converts the categorical text 

labels into numerical values, allowing the 

machine learning model to process the data. 

Other columns, such as features representing 

network attributes, either remain in their 

original numerical form or undergo techniques 

like one-hot encoding for categorical data. This 

ensures that the model can effectively learn 

from both the target variable and the feature set. 

In this research, the dataset was split into 

three distinct subsets: training, validation, and 

test sets. The training set contains 345,814 

instances and is used to train the model, 

allowing it to learn the relationships between 

the features and the target variable. The 

validation set with 98,804 instances is used to 

tune hyperparameters and prevent overfitting 

by evaluating the model during training. 

Finally, the test set with 49,403 instances is 

reserved for final evaluation, providing an 

unbiased assessment of the model’s 

performance after training and hyperparameter 

optimization. 

2.3 LightGBM Training with Cost-Sensitive 

Dataset used in this research is highly 

imbalance that needs to be handled to achieve 

the best result. This research use cost-sensitive 

learning in LightGBM to handle the imbalance. 

Cost-sensitive learning assigns a higher weight 

to the minority class so that the model has 

higher sensitivity towards the minor class. This 

study uses scikit-learn’s compute_class_weight 

function to calculate the weight of each class 

(Telikani et al., 2022). These weights were 

passed to the model by specifying them as 

instance weights during dataset creation via the 

weight parameter in lgb.Dataset. XGBoost also 

used in this research as a performance 

comparator for LightGBM.  

Hyperparameter tuning is also done in this 

phase. This research use grid search for tuning 

the hyperparameter. Table 2 shows the 

hyperparameter set for LightGBM and Table 3 

shows the hyperparameter set fot XGBoost. 

Lambda and alpha are used for making the 

model more general to prevent overfitting 

(Chen & Guestrin, 2016). Num leaves and max 

depth only used in LightGBM since XGBoost 

does not have those hyperparameter. Num 

leaves in this research is in charge to control the 

maximum number of leaves in a tree. Max depth 

is used for limits the depth of each tree. It has 

impact to model complexity and training time. 

Learning rate determines the step size at each 

boosting iteration. 

Table 2. LightGBM Hyperparameter Set  

No  Hyperparameter  Value 

1.  Lambda  [0, 0.01, 0.1, 1, 10] 

2.  Alpha  [0, 0.01, 0.1, 1, 10] 

3. Num Leaves [31, 63, 127] 

4.  Max Depth  [3, 5, 7] 

5.  Learning Rate  [0.01, 0.05, 0.1] 

Table 3. XGBoost Hyperparameter Set  

No  Hyperparameter  Range 

1.  Lambda  [0, 0.01, 0.1, 1, 10] 

2.  Alpha  [0, 0.01, 0.1, 1, 10] 

3.  Max Depth  [3, 5, 7] 

4.  Learning Rate  [0.01, 0.05, 0.1] 

2.4 Model Evaluation 

This research uses four classification 

metrics, and that are accuracy, precision, recall, 

and f1-score. Accuracy measures how well it 

can predict, but because the model is generally 

biassed to the majority class, accuracy generally 

isn't meaningful in cases where there is 

imbalanced data. The precision, recall, and F1-

score of the model are also calculated to 

measure how well it can predict the minority 

classes. Recall estimates the model's 

performance in classifying an instance into a 

class, while precision measures how accurately 

the model performs in generating correct 

predictions within the predicted class. The F1-

score uses the harmonic mean to merge 

precision and recall scores. 

 

III. RESULTS AND DISCUSSION 
 

LightGBM achieved a very high cross-

validation accuracy of 0.9997 and test set 

evaluation accuracy of 0.999, revealing the high 

capability of the model to detect the target 

variable. The hyperparameters for LightGBM 

were adjusted to achieve these results, as shown 

in Table 2. The hyperparameters selected are a 

Lambda of 0, which will regularize the model 

by penalizing large coefficients, and an Alpha 

of 1, which will assist in making the model less 
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prone to overfitting. The model further utilized 

63 as the optimal number of leaves and a 

maximum depth of 7 to permit good tree growth 

without overfitting. The learning rate of 0.1 was 

utilized to trade-off convergence speed with 

model stability in order to allow good learning 

during training. These hyperparameters have 

important role in achieving the high accuracy 

values in both cross-validation and test set tests, 

confirming the suitability of LightGBM for this 

specific classification task. 

Table 4. LightGBM Best Hyperparameter 

No  Hyperparameter  Range 

1.  Lambda  0 

2.  Alpha  1 

3. Num Leaves 63 

4.  Max Depth  7 

5.  Learning Rate  0.1 

XGBoost demonstrated an excellent cross-

validation accuracy of 0.9998 and a test set 

accuracy of 0.9998, both slightly better than 

those achieved by LightGBM. The XGBoost 

optimized hyperparameters, as seen in Table 3, 

are a Lambda of 0.1 for regularization to 

prevent overfitting by punishing large 

coefficients and an Alpha of 0, i.e., no 

additional regularization on the leaf scores. The 

model's maximum depth was set to 7, the same 

as LightGBM's, to have a compromise between 

model complexity and generalization. A 

learning rate of 0.1 was chosen to allow for 

stable and effective training of the model while 

achieving speed vs. accuracy balance. 

Comparing with LightGBM, whose accuracy 

was slightly less (0.9997 for cross-validation 

and 0.999 for test set), the performance of 

XGBoost was marginally superior. Both models 

have very good predictive power, but the 

slightly better accuracy of XGBoost could make 

them more efficient in this classification task, 

though both models perform very well with 

very good accuracy. 

Table 5. XGBoost Best Hyperparameter 

No  Hyperparameter  Range 

1.  Lambda  0.1 

2.  Alpha  0 

3.  Max Depth  7 

4.  Learning Rate  0.1 

Table 4 shows the performance metrics 

comparison of XGBoost and LightGBM, with 

their efficiency presented on this imbalanced 

dataset. LightGBM outperformed XGBoost on 

all evaluation metrics with best scores of 1.00 

in precision, recall, F1-score, and accuracy. 

This indicates that LightGBM handled the 

imbalance of the dataset better, with correct 

identification of minority and majority classes 

without false negatives or false positives. On 

the other hand, XGBoost achieved accuracy of 

1.00, which means perfect correct classification 

but its precision (0.85), recall (0.88), and F1-

score (0.86) were not as good as LightGBM. 

XGBoost's low recall and precision show that it 

performed poorly on the imbalanced 

distribution of data, having higher false 

positives and false negatives. Thus, LightGBM 

proved to be a more stable model in this skewed 

dataset, as its performance for precision, recall, 

and F1-score were enhanced. 

Table 6. Result Comparison 

Model Precision Recall F1-

Score 

Accuracy 

With Cost Sensitive Learning 

XG 

Boost  

0.85 0.88 0.86 1.00 

Light 

GBM 

1.00 1.00 1.00 1.00 

Without Cost-Sensitive Learning 

XG 

Boost  

0.89 0.82 0.84 1.00 

Light 

GBM 

0.84 0.80 0.81 1.00 

Figure 1 shows feature importance for 

LightGBM and Figure 2 shows feature 

importance for XGBoost. The feature 

importance analysis reveals notable differences 

between LightGBM and XGBoost in how they 

utilize the input features. LightGBM assigns the 

highest importance to features related to 

connection and service-level statistics such as 

srv_count, same_srv_rate, and count, which 

reflect traffic volume and service similarity—

key indicators in intrusion detection. In 

contrast, XGBoost places greater emphasis on 

features like src_bytes, dst_host_count, and 

dst_host_srv_count, which are more focused on 

byte-level traffic data and destination host 

activities. Although some features like count 

and dst_host_same_src_port_rate appear 

among the top in both models, their relative 

rankings differ significantly. These 

discrepancies highlight the models’ differing 

learning behaviors: LightGBM’s leaf-wise tree 

growth seems to better capture broader traffic 

patterns, while XGBoost relies more on detailed 
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host and byte statistics. Additionally, the 

absolute scales of feature importance differ, 

with LightGBM’s values being orders of 

magnitude larger, reflecting differences in how 

each algorithm computes importance metrics. 

Overall, this divergence in feature prioritization 

may explain LightGBM’s superior performance 

in detecting minority classes, as it more 

effectively leverages service-related features 

that signal anomalous behavior in network 

traffic. 

 
Figure 2. LightGBM Feature Importance 

 

 
Figure 3. XGBoost Feature Importance 

While the proposed cost-sensitive 

LightGBM shows improved performance on 

the tested imbalanced dataset, there are several 

limitations to consider. First, the evaluation was 

conducted on a limited dataset, which may not 

fully capture the diversity of class imbalance 

scenarios found in real-world applications. 

Additionally, there is a potential risk of 

overfitting due to the cost adjustments, 

especially when dealing with small or noisy 

datasets. Future work should include testing on 

a broader range of imbalanced datasets from 

different domains to validate the 

generalizability of the approach. Furthermore, 

integrating other imbalance mitigation 

techniques such as ensemble learning, 

resampling, or hybrid approaches could provide 

additional performance gains. 

IV. CONCLUSION 
 

This study evaluated the effectiveness of 

cost-sensitive learning combined with 

LightGBM and XGBoost in handling 

imbalanced classification tasks. Although both 

models achieved very high overall accuracy, 

further analysis revealed that accuracy alone 

was not sufficient to assess model performance 

under class imbalance. LightGBM integrated 

with cost-sensitive learning outperformed all 

other configurations, achieving perfect scores 

(1.00) in precision, recall, and F1-score. This 

indicates that LightGBM was able to correctly 

classify both majority and minority classes 

without misclassifications, making it highly 

reliable in scenarios with skewed data 

distributions. 

In contrast, XGBoost, even with cost-

sensitive tuning, showed lower performance in 

recall and precision, highlighting its limitations 

in capturing minority class instances 

effectively. Models without cost-sensitive 

learning also underperformed on minority class 

metrics, reinforcing the importance of 

algorithm-level strategies over data resampling 

alone. Overall, the findings support the use of 

cost-sensitive LightGBM as a robust solution 

for imbalanced data classification, especially in 

high-stakes applications such as fraud 

detection, cybersecurity, and healthcare, where 

the cost of misclassification can be critical. 
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