
JURNAL EMACS
(Engineering, MAthematics and Computer Science) Vol.7 No.2 May 2025: 129-138

129

e-ISSN: 2686-2573

DOI:

10.21512/emacsjournal.v6i

3.11968

DOI: 10.21512/emacsjournal.v7i2.13429

DOI: 10.21512/emacsjournal.v6i3.11968

Copyright © 2025

Combining Academia and Industry Approach for Secure

Coding and Requirements Checklist in S-SDLC:

Systematic Literature Review

Anderies1*, Ika Dyah Agustia Rachmawati2, Kenny Jingga3, Calvin Linardy Candra4

1,3Computer Science Program, Computer Science Department, School of Computer Science,
2 Cyber Security Program, Computer Science Department, School of Computer Science,

Bina Nusantara University,

Jakarta, Indonesia 11480

4Cyber Security Research, School of Information Technology,

Deakin University,

Waurn Ponds, Australia VIC 3216

anderies@binus.ac.id, ika.rachmawati001@binus.ac.id, kenny.jingga@binus.ac.id,

s224910144@deakin.edu.au

*Correspondence: anderies@binus.ac.id

Abstract — Rapid progress of digital transformation has

occurred across governments, organization and vendors

around the world. where this rapid digital transformation is

not linearly followed by the security protection of digital

infrastructure and its application. For example, in Indonesia

One of the largest banks was unable to operate its online and

physical services for three consecutive days due to a cyber-

attack. And many international organizations also

experienced the same thing or even worse like bankruptcy.

Because of this phenomenon the authors have performed a

systematic literature review and identified there are two

important phases namely requirement and coding in secure

software development lifecycle (S-SDLC). In this study the

authors compose 18 Secure Requirement practices (SREC)

and 72 Secure Coding Checklist (SCOC) checklist based on

Combining previous academia research study and

international standard of open secure coding practices

(OSCP) in which we target the security vulnerable most

occurred to governments, organization and vendors around

the world according to Open Web Application Security

Project Foundation. This checklist can be embedded in the

Quality Assurance process to check in sequence whether the

Requirements and Coding that are produced are safe or not

from the cyber-attack. Additionally, the checklist approach is

simple to understand and can be implemented to a popular

public consumer automation testing tools enabling faster

software development while maintaining software security.

Keywords: Cyber Security; Secure Software Development

Lifecycle; Software Engineering; Systematic Literature

Review

I. INTRODUCTION

Secure Software Development Lifecycle (S-SDLC)

is currently neglected by most organizations, vendors

and government and user itself. These parties are

forgetting that incorrect environment is potentially

resulting threats such as financial losses, operational

disruptions and reputational damage to the parties itself

(Humayun et al., 2022; Inggarwati et al., 2020; A. W.

Khan et al., 2022). In May 2023, Bank Syariah

Indonesia, one of the largest financial institutions in

Indonesia, fell victim to a ransomware attack

orchestrated by the cybercriminal group LockBit 3.0.

The attackers claimed to have exfiltrated 1.5 terabytes

of sensitive data, including records of 15 million

customers, and threatened to disclose the information

unless a ransom was paid. This cyberattack resulted in

the disruption of BSI’s banking services, rendering both

mobile and physical transactions inaccessible to

customers. Consequently, the incident inflicted

substantial financial losses and severely compromised

the institution’s reputation, highlighting critical

vulnerabilities in the cybersecurity framework of the

banking sector (Fitriani et al., 2023).

Research claims by H. Sadler (Sadler, 2020) state

that secure software development lifecycle

environment or S-SDLC is necessary to avoid many

external threats. It supports developers to build secure

software applications while also enhancing their skill,

competencies and productivity which impacted many

aspects in software development (Saeed et al., 2025).

Advancements in Information and Communication

Technology (ICT) have transformed various aspects of

human life, from daily activities to critical sectors such

as healthcare, finance, and other essential works. These

activities often rely on software applications, making

the security aspect of software applications important.

Additionally, software applications are typically

interconnected with other applications, which underline

the importance for governments, organizations and

vendors to implement a Secure Software Development

Lifecycle (S-SDLC) (de Vicente Mohino et al., 2019).

130 JURNAL EMACS (Engineering, MAthematics and Computer Science) Vol.7 No.2 May 2025: 129-138

Due to lack of concern in S-SDLC that may threaten

Confidentiality, Integrity, Availability and Valuable

(CIAV) Resources for governments, organization and

vendors. In this study the authors want to perform a

Systematic Literature Review (SLR) on S-SDLC and

inform what faces organization, vendors and firm if

they are neglecting the S-SDLC (B. Kitchenham et al.,

2009; B. A. Kitchenham, 2012). and introduce insight

of comprehensive security checklist for S-SDLC that

derived from systematic literature review and

international security standard to mitigate security

issues and cyber-attack to software application. The

author also utilizes the Retrieval Augmented

Generative (RAG) Artificial Intelligence product to

perform searching, collecting and filtering the primary,

review and SLR research study. In purpose of

improving quality of articles collection and information

to answer Research Questions (Ayemowa et al., 2024;

Gwon et al., 2024).

 We use checklist approaches because we aim for

simplicity of practical uses and implementation

purposes yet proven and beneficial on the field, several

studies also use checklist approaches for their ICT

Infrastructure in the healthcare industry to mitigate

cyber-attack (Baz et al., 2023; Rajamäki et al., 2024).

The remainder of this paper is structured as follows:

Section 2 provides details on phases of SLR conducted.

Methods and research study to answer two research

questions about security issues, cyber-attack and S-

SDLC in Section 3. Section 4 is Result and Discussion

which Introduce a minimalistic S-SLDC with checklist

approach from international previous study and

international standard. Section 5 of this study.

II. METHODS

A Systematic Literature Review a.k.a SLR was

selected to be foundation of the research methodology

on this study review, because SLR shown of credibility

in the process of development article collection and

reducing interpersonal-bias, However the authors are

performing smaller enhancement for the SLR method

rigorously and having alignment with the objective

which is finding reliable, latest and trusted sources of

the study. According to Kitchenham an SLR has three

main phases (B. Kitchenham et al., 2009; B. A.

Kitchenham, 2012). The first is planning, conducting

and the third answering. see Table 1 for the details.

Table 1. SLR Phases

Phases Sub Phases

Planning ● Research Question

● Study Sources

● Inclusion and

Exclusion Criteria

● Search Strings

● AI Prompting String

● Study Selection by

Matching Abstract

with Authors

keywords

Conducting ● Filter and Selecting

the study

● Reading the study

content

Answering ● Answering Research

Question

● Making Responsible

Insight and Comments

2.1 Planning Phase

2.1.1 Research Question.

The current study conducted a modified SLR, there

are two research questions that were answered in this

study:

• RQ1: What threat do organizations, firms, or

vendors face if they neglect the Secure

Software Development Life Cycle (S-SDLC) ?

• RQ2: What Secure Software Development

Lifecycle practices should be implemented

during requirement engineering and coding

stages to mitigate the security threat ?

2.1.2 Study Sources.

In this study, the paper is gathered by manual

search, there are total of six digital repositories were

chosen, the following are scholarly digital sources that

were chosen:

1. MDPI

2. Google Scholar

3. Science Direct

4. Springer Link

5. Wiley Online Library

6. ACM Digital Library

2.1.3 Search String. In this study the paper using

search strings for searching in scholarly database as

follows:

1. Secure Software Development

2. Software Development Lifecycle

3. Cyber Security Condition

4. Standard of Application System

5. Security Solution

6. Software Application

7. Global Software Development

2.1.4 AI Prompting String.

Generative Artificial Intelligence (GAI) has been

transformed into Retrieval-Augmented Artificial

Intelligence (RAG) which can perform a combination

of operations like searching on the internet, thinking,

and summaries. This RAG also showed potential in

aiding systematic literature reviews according to

several current latest study in literature review

(Ayemowa et al., 2024; Gwon et al., 2024).

For the objective of improving the quality of

answering research questions the authors utilize this

popular Retrieval Augmented Generative (RAG) to

perform deep filtering, summarizing and gaining

insight from primary and secondary study. The authors

perform prompting string as follows:

131 Secure Requirement Checklist and Secure Coding Checklist… (Anderies, et.al)

1. “Make sure the information and reference are

from popular journal or international

conference indexed by Scopus”

2. “Can you reference the real example from

popular open access journal?”

3. “Please give me the example of (keyword)

from credible journal or sources ?”

4. “Can you find and answer these (keyword)

scientifically using references from popular

and credible journal ?”

5. “Search for me the 10-20 journal Scopus

indexed related to (keyword)?”

2.2 Inclusion and Exclusion Criteria

2.2.1 Inclusion Criteria

For data Inclusion, we adopted the following

guidelines-based parameters used by other researchers:

1. Papers must be written in English.

2. Papers were published between 2000 to 2024.

3. Articles related to the domain of Secure

Software Development or Threat to Software

Application.

4. Articles related to Cyber Security.

5. Articles related to Cyber Attack.

2.2.2 Exclusion Criteria

The authors followed the guidelines based on

parameters used by other researchers:

1. Papers that don’t deal with secure software

development lifecycles.

2. Papers that don’t mention any secure or

software risk keywords

3. Publications are not peer-reviewed and do not

conform to a complete book's abstract, an

editorial, or a letter.

4. Paper is not written in English

5. Duplicate papers were not considered.

2.2.3 Conducting Phase

In the conducting phase we utilize several tools

such as Preferred Reporting Items for Systematic

Reviews and Meta Analyses (PRISMA) and Retrieval

Augmented Generation (RAG) Searching and

Filtering. PRISMA methodology is valuable tool to

conduct systematic review and meta-analysis or SLR

in different fields, including the computer science

study and its branch knowledge (Javed et al., 2023).

Figure 1 shows the PRISMA process that authors

perform there are four phases as follows:

A. Phase 1 : using search string and prompting

string to find related articles.

B. Phase 2 : Perform Inclusion and Exclusion

Criteria based on articles abstract and articles

full-body.

C. Phase 3 : Perform full-abstract and skim reading

on the articles body.

D. Phase 4 : Final collection of primaries study and

Systematic Literature Review studies.

Figure 1. The PRISMA Process of relevant literature

Review

Thanks to the advancement of Generative AI, the

author is possible to perform phase 1 and 2 which

consist of performing inclusion and exclusion criteria

on the body because we have power of quick

summarative to assist the author perform deep

inclusion and exclusion criteria to find good quality of

articles that match our research questions.

2.3 Answering Phase

In answering phase, the authors utilize the source

from reputable international journal articles,

international conference Scopus indexed and S-SDLC

reputable security guidelines to provide information

and insight for the author to answer research questions.

in RQ 1 author’s make a list of tables that cyber threat

may occur to organizations if neglecting the S-SDLC,

in RQ 2 the author utilizes many guideline and journal

articles and translate it into actionable checklist table

for requirement and coding stages. This research

questions review isn’t limited to S-SDLC within

specific industries as a result, the insights derived are

more generalized and may apply to any organizations,

firms and vendors.

III. RESULT AND DISCUSSION

RQ 1: What threat do organizations, firms, or vendors

face if they neglect the Secure Software Development

Life Cycle (S-SDLC)?

Ignoring Secure Software Development Lifecycle

(S-SDLC) can expose companies to various threats,

including data breaches, financial losses, operational

disruptions and reputational damage. failure to

compose SDLC with security concern can lead to

several issues unpredicted problem, many

organizations prioritize security as an afterthought

132 JURNAL EMACS (Engineering, MAthematics and Computer Science) Vol.7 No.2 May 2025: 129-138

using motto “patch and penetrate” strategy, resulting in

increased cost and unpredictable timeline or even

launch before it’s ready (Humayun et al., 2022).

These various threats are categorized into issues by

previous research (A. W. Khan et al., 2022), that claims

there are 13 main cyber security issues and challenges

faced by vendors and organizations from 67 research

studies, the most common issues/challenges were

related to 1) cyberattacks, 2) lack of right knowledge

and 3) lack of management. In Table 2, it shows the

three potential issues and its sub issues that

organization will face if neglecting the secure software

development lifecycle (S-SDLC) according to Khan et

al. (2022) study. The author performs in-depth reviews

with the potential impact to organization, firms and

vendors.

The main issue / challenges faces is access of

cyberattacks. The most sub issues of cyberattack

frequent is injection type of attack such as SQL

Injection surveyed by OWASP. It’s the third ranked

attack in 2021 and the number one cyberattack in 2020.

When Software application gets SQL Injection, the

impact of application is unpredictable.

Table 2. Top Ranking Cyber Security Issues

No Issues Sub-Issues

1

Cyber Attacks

(Khan et al,

2022)

- SQL Injection

- Broken Access Control

- Distributed Denial of Service

(DDoS)

2.

Lack of

Knowledge

(Khan et al,

2022)

- Third Party Integrating

Vulnerabilities

- Easier Reverse Engineering

- Hardening Forensics/

Monitoring Failures

- Cryptographic Failure and

Encryption at rest Failure

3.
Lack of

Management

- Insider Attack

- Social Engineering

- Misconfiguration Security

The hackers are able to retrieve all user data or even

whole database, resulting in a data breach, which can

be exacerbated by severe injection vulnerabilities.

Additionally, the attacker may execute arbitrary

changes using queries such as Insert, Alter, or even

Drop query. If these actions occur, the potential

financial losses for the company become highly

unpredictable. Attackers could delete data, steal

information, damage systems, and execute malicious

commands, leading to significant financial,

operational, or reputational damage to the company.

several cyber-attacks that may occur to firms and

organizations are Broken Access Control (Anas et al.,

2024) dan Distributed Denial of Service (Karthikeyani

& Karthikeyan, 2023; Singh & Gupta, 2022; Yuryna

Connolly et al., 2020). and this cyber-attack is in line

with OWASP 2021 report.

Broken Access Control (BAC) is a serious software

application vulnerability stated by the previous

research. BAC allows unauthorized users to bypass

permissions and perform unauthorized actions leading

to data breaches, breaking data integrity and privacy

concerns. BAC enables user to be authenticated as

another user or higher access user. lack of concern S-

SDLC affecting software application has vulnerability

in code or the weakness on user process causing user

able to perform such actions (Anas et al., 2024). The

Distributed Denial of Services (DDoS) technically

cannot be eliminated, however it can be mitigated and

reduced through various strategies that will be

discussed in RQ2.

The second main issues of not implementing the

Secure Software Development Life Cycle (S-SDLC):

Lack of Knowledge, this is refers to a deficiency in

understanding various aspect such as intellectual

property rights, software products and third party

application development domain which impacted to

Unauthorized Access, Easier Reverse Engineering and

Hardening Forensics / Monitoring Failures and

Cryptographic Failure which reducing significant

integrity of whole software products and it’s

organization.

The emerging of open-source libraries,

components, software and application led some

organizations, firms and vendors to rely on these

services to build their software application efficiently

and effectively. They also connect their software

application to the service like online storage services,

payment gateway services, and other services. These

services are known as software, platform or code as

services. However, they are unaware that the services

they are integrating have security vulnerabilities in the

integrating process that makes cyberattack scenario

awaiting them. This security issue the authors refers to

as Third Party Integrating Vulnerabilities. These

vulnerabilities are sometimes fatal because

unexperienced hacker can land cyber-attack without

the organization knowing it and this becomes concern

of some previous research in academia, technologies

founders and leading technology industry (Li et al.,

2019; Zhan et al., 2021). Implementing S-SDLC may

significantly reduce this Third-Party Integrating

Vulnerabilities.

Reverse Engineering in context of software

application, reverse engineering is a process of

reconstruct and analysis an existing software

application. This process is able to reconstruct the

software structure, components, decoding source code,

understanding the algorithms and documenting

software key functions, therefore this technique could

threaten an organization, firms and vendors that benefit

their competitor to re-produce the software or crack the

software which impacted to financial losses and

integrity of respected organizations. Due to lack of

knowledge, software applications become easier to

perform reverse engineering, and the software

application appears exposed to competitors and

133 Secure Requirement Checklist and Secure Coding Checklist… (Anderies, et.al)

hackers. Reverse engineering with combination of

security misconfiguration and S-SDLC may land fatal

damage to an organization (Canavese et al., 2022).

Forensics in software engineering involves

ensuring that software systems are capable of

supporting digital investigations or in general forensics

is a science process to investigate and verify claims to

uphold the justice with non-repudation characteristics.

Forensics activity in the context of software

applications is performing logging, monitoring

activities, ensuring data integrity and maintaining clear

audit of spesific action in software application. These

forensics in software application environment play a

significant role to cyber-crime investigation, due to

lack of knowledge, monitoring system and logging has

become chaotic and hard for people to analyze and

investigate the perpetrator and what kind of attack that

prepetrator landing to organizations, firm and vendors,

this investigation is essential for mitigating the issues

occured. Some organizations are not even aware of this

logging standardization in context of where, what kind

of format and how long the logging is stored. worse

than that this logging system doesn’t even exist in

software application which impacted to Hardening

Forensics Process and Monitoring Failure or even

worse, the attacker maintaining sustainable access to

specific organization (Pasquale et al., 2018).

Cryptographic Failures, as mentioned by the Open

Web Application Security Project (OWASP) refer to

issues related to incorrect implementation or use of

cryptographic systems that can lead to security

vulnerabilities. These issues are included in the

OWASP Top 10 list, which identifies the most critical

and common security risks to software application.

Cryptographic failures are caused by several events

such as Insecure Cryptographic Storage, Outdated

Algorithms, Improper Key Management, Encryption at

Rest Failure, Insecure Transmission Protocol

(Hazhirpasand & Ghafari, 2021). A previous study

defines cryptographic failures as the incorrect usage of

cryptography which can leave sensitive data vulnerable

to exposure. The paper discusses instances such as the

use of outdated cryptographic algorithms such as MD5

and SHA-1 which are known to be susceptible to

attacks and highlights the need for using stronger

alternatives like SHA-256 (Prasanna & Premananda,

2021). See Table 3 to prevent cryptographic failure

issues.

Table 3. Cryptographic Failure Issues with its

Prevention
Issues Prevention

Cryptographic

Failure

Encrypt Sensitive Data

Proper Key Management

Use Storing Hashing Functions such as

bcrypt, scrypt and Argon2

Avoid Deprecated Algorithms such as

MD5 and SHA1

Authenticated Encryption

Disable Caching for Sensitive Data

Lack of Management refers to a critical challenge

identified in Khan et al (2022) research indicating a

deficiency in focusing requirements, managing issues,

careless behavior of developers which related to

insider threat.

Business Processes (BP) are considered

cornerstone of organization and lack of management

refers to a critical challenge identified in study by Khan

et al (2022). These processes are often translated into

software applications, and they are non-risk-free in

terms of software security. An example is the attack of

compromise of a business process, which takes

advantage of system loopholes what is commonly

known in cyber security Insider Attack, this loophole

instead of being reported, however it’s exploited.

In the study of Khan et al, they are analyze 121

studies and found 424 best practices that may help

organization for developing a secure software

application, one of the essential phase that may define

a sofware application for organization is Requirement

Engineering, therefore the authors filter the Secure

Requirement Engineering Practice (SREP) from Khan

systematic literature review study based on the most

top frequency used in 121 primary study, which is

identified as SREP1 ranked first, SREP2 ranked 2 and

SREP 4 ranked 3 (R. A. Khan et al., 2022).

Table 4. Secure Requirement Engineering Practices.

SREP1 Develop Threat Modelling (Freq : 25)

SREP1.1 Perform STRIDE

SREP1.2
Include security requirements as part of

defining functional requirements

SREP 1.3 Perform DREAD

SREP 1.4
Understand and Incorporate Compliance

and Regulatory requirements

SREP2
Security Requirement Elication

Practices (Feq : 31)

SREP2.1
Elicit and categorize safety and security

requirements

SREP2.2
Take into consideration organizational

and political issues

SREP2.3

Use scenarios to elicit sensitive data and

communication in terms authentication,

authorization, privacy, system

maintenance

SREP2.4 Identifty Stakeholders.

SREP2.5
Identify the operationg environment of

system.

SREP11
Methods used in Security RE (Freq :

42)

SREP11.1 UMLSec, SecureUML

SREP11.2 Secure Troops

SREP11.3 Abuse Cases

SREP11.4
Structure Object Oriented Formal

Language

SREP11.5 Machine Learning Techniques

SREP11.6 Fuzz-Analytic Hierarchy Process

SREP11.7
Security Requirement Engineering

Approach

SREP11.8 Problem Frames

SREP11.9 Tropos (i’ framework)

SREP11.10 Create and describe Misuse Cases

134 JURNAL EMACS (Engineering, MAthematics and Computer Science) Vol.7 No.2 May 2025: 129-138

In Table 4 there are SREP that the authors filter it

by top frequency and select to retrieve the keyword

STRIDE, DREAD, Identification and Threat, in reason

that the authors want to convert SREP to actionable

checklist that must be employed within SSDLC from

SREP 1.1 to SREP 1.4 and Practice List (PL) and make

an checklist shown in Table 5 and after that summarize

and categorize it into Table 6 for easier implementation

purpose.

Table 5. Secure Requirement Practice Checklist

No. Checklist

PL1

SREP1.

1-1.4

Have the organization's

components/services been conceptually

mapped along with other connected

applications?

PL2

SREP1.

1-1.4

Have all organizational assets or resources

connected to the software application been

identified and listed?

PL3

SREP1.

1-1.4

Has threat modeling, including specific

cyber-attack scenarios, been defined for the

software application?

PL4

SREP2.

1

Is the Security QA team aware of the

system's security requirements?

PL5

SREP2.

1

Is the product manager aware of the

system's security requirements?

PL6

SREP2.

2

Have the Security QA and Product

Manager listed the types of risks, severity

levels, nature, security priorities, etc.?

PL7

SREP2.

1

Have all security requirements been

defined and categorized?

PL8

SREP2.

2,

SREP2.

4

Have the Security Quality Assurance and

Product Manager prepared a report on

potential cyber-attack scenarios and their

consequences if security requirements are

neglected?

PL9

SREP2.

2

SREP2.

4

Has stakeholder analysis (using a Power-

Interest chart) been conducted to facilitate

the implementation of security

requirements?

PL10
Has the Product Owner been informed of

the reports?

PL11
Have high-influence stakeholders been

informed about the reports?

PL12
Have security requirements been revised to

mitigate the identified risks?

PL13

Have the revised security requirements

been incorporated into the functional

requirements, including Security

Acceptance Criteria?

PL14

SREP1

1.1

SREP1

1.10

Are personnel responsible for modeling and

design implementing UMLSec, Secure

UML, or SecureTroops?

PL15

SREP1

1.5

SREP1

1.16

Are personnel involved in modeling and

coding aware of common AI/ML

implementations to address cyber-attack

scenarios?

PL16

SREP

11.17

Have security requirements been defined as

functional requirements?

PL17

SREP

11.10

SREP1

1.13

SREP2.

2

SREP2.

4

Have the Security Quality Assurance and

Product Manager finalized the report on

potential cyber-attack scenarios and the

consequences of neglecting each

requirement?

PL18

SREP1

1.10

11.3

Does the report include misuse cases and

abuse cases?

Table 6. Summary of Secure Requirement Checklist

1 Identification

SREC

1

Have the components/services of the

organization been conceptually mapped along

with other connected applications?

SREC
2

Have all organizational assets or resources

connected to the software application been

identified and listed?

2 Reports

SREC

3

Has threat modeling and its specific cyber-

attack scenarios been defined for the software

application?

SREC
4

Have the Security QA and Product Manager

completed the listing of risks, including their

type, severity level, nature, security priority,

etc.?

SREC
5

Have the Security QA and Product Manager

created a report on potential cyber-attack

scenarios and the consequences of neglecting

each defined security requirement?

SREC

6

Have the Security QA and Product Manager

finalized the report on potential cyber-attack

scenarios, along with the consequences of

neglecting each defined requirement?

SREC

7
Does the report include misuse cases and abuse

cases?

3 Awareness and Informed

SREC
8

Is the Security QA aware of the security

requirements for the system?

SREC

9
Is the Product Manager aware of the security

requirements for the system?

SREC

10

Has stakeholder analysis with a Power-Interest

chart been performed to support the

implementation of security requirements?

SREC
11

Has the Product Owner been informed about

the reports?

SREC

12
Have high-influence stakeholders been

informed about the reports?

SREC

13
Do the reports include frameworks such as

UMLSec, SecureUML, or Secure Tropos?

SREC

14

Are individuals involved in modeling and

coding aware of common AI/ML

implementations to handle cyber-attack

scenarios?

4 Requirements

SREC
15

Have all security pre-requirements been

defined and categorized?

135 Secure Requirement Checklist and Secure Coding Checklist… (Anderies, et.al)

SREC

16
Have the security requirements been

restructured to mitigate the identified risks?

SREC

17

Have the security requirements been

incorporated into the overall requirements with

Security Acceptance Criteria as the final

functional requirement?

SREC

18
Have the security requirements been defined

alongside functional requirements?

To answer the research question in Secure Coding

Practice to avoid cyber-attack security we utilize Open

Web Application Security Project (OWASP)

guidelines in Secure Coding Practices.

In OWASP Secure Coding Practice there are 14

Section. 1) Input Validation, 2) Output Encoding, 3)

Authentication and Password Management, 4) Session

Management, 5) Access Control, 6) Cryptographic

Practices, 7) Error Handling and Logging, 8) Data

Protection, 9) Communication Security, 10) System

Configuration, 11) Database Security, 12) File

Management, 13) Memory, 14) General Coding

Practices. From these 14 sections the authors determine

to make checklist from Input Validation Secure Coding

Checklist in Table 7, Output Encoding (OE) in Table

8, Authentication and Password Management Secure

Coding Checklist in Table 9, Access Control Secure

Coding Checklist Table 10, Cryptographic Secure

Coding Checklist in Table 11.

Table 7. Input Validation Secure Coding Checklist

Sources No. Checklist

OSCP IV

1&2
1

Are all input fields in the web

application’s form tags validated

on the front end?

OSCP IV

1&2
2

Is the web application’s API hosted

on a trusted server?

OSCP IV

1 & 2
3

Is the web application’s API

validated for each input submitted

through form tags?

OSCP IV

1 & 2
4

Are all file upload forms in HTML

strictly validated to permit only

allowed file types and formats?

OSCP IV

3
5

Does the web application have a

centralized file location to handle

acceptable input formats?

OSCP IV

4, 5, 8
6

Are all input and output data in

both the web API and front-end

interface properly encoded in UTF-

8?

OSCP 7 7

Is the input and output from the

web application’s API and

interface encoded in UTF-8?

OSCP 6 8

Does the web API application use a

centralized template for handling

input rejection, complete with

standardized messages (e.g.,

middleware or centralized file)?

OSCP IV

8
9

Are HTTP headers, such as

Cookies, User-Agent, Referer, and

others, validated and sanitized?

OSCP IV

8
10

Are URLs and parameters sanitized

before being sent to the web API?

OSCP IV

8
11

Are URLs and parameters

validated and sanitized upon

receipt by the web API?

OSCP IV

9
12

Are all HTTP header responses to

the API validated and restricted to

the ASCII character set?

OSCP IV

10
13

Is redirect URL data validated

before being processed or

executed?

OSCP IV

11, 12,

13

14

Are all HTML form inputs

validated for data type, range, and

length prior to submission?

OSCP IV

14
15

Does the front end enforce correct

input types using appropriate

HTML form elements?

OSCP IV

15 & 16
16

If special or hazardous characters

must be used as input, is there a

specific function in a centralized

file to handle them?

Table 8. Output Encoding (OE) Secure Coding

Checklist
Sources No. Checklist

OSCP

OE 1
18

Is all output encoding performed

on the server side, ensuring that

no encoding logic is delegated to

the client side?

OSCP

OE 2
19

Is there a standardized and well-

tested encoding library used for

all web application output

encoding operations?

OSCP

OE 3,5
20

Are encoding and decoding

operations for both the web

application’s API and interface

set to UTF-8?

OSCP

OE 6
21

Have all inputs to database

queries been properly sanitized?

OSCP

OE 4, 5,

7

22

Have all inputs and outputs

connecting the web application

system to third-party applications

been sanitized?

Table 9. Authentication & Password Management

Secure Coding Checklist
Sources No. Checklist

OSCP

APM 23,

26, 27

23

Are all authorized pages protected

using a middleware-based strong

authentication system?

OSCP

APM 23
24

Does the authentication system in

the middleware comply with

security standards?

OSCP

APM 23

& 24

25

Is the authentication API system

hosted on a trusted server?

OSCP

APM 23&

24

26

Is your server provider using

secure communication protocols

(e.g., HTTPS)?

OSCP

APM 23
27

Is your server accessible?

OSCP

APM 28,

OSCP33

28

Does the web application API

ensure that authentication failure

messages do not reveal specific

failure details?

OSCP

APM 28
29

Does your web API properly clear

all session data upon logout?

136 JURNAL EMACS (Engineering, MAthematics and Computer Science) Vol.7 No.2 May 2025: 129-138

OSCP

APM 28,

OSCP41

30

Does your web API enforce an

entry rate limitation for

authentication attempts?

OSCP

APM 30

& 31

31

Does the web API use strong

hashing functions with a write-

only method for storing sensitive

data?

OSCP

APM 32
32

Does the web API sequentially

process all authentication inputs it

receives?

OSCP

APM 34
33

If your web API is connected to

external systems, is there an

authentication system in place for

those connections?

OSCP

APM 36
34

Are HTTPS POST requests used

to transmit authentication

credentials?

OSCP

APM 37
35

If your system transmits

temporary passwords, are they

encrypted, transmitted over

HTTPS, and accessible only to

authorized users?

OSCP

APM 38

& 39

36

Does your web API enforce

specific password complexity

requirements?

OSCP

APM 40
37

Does your web interface obscure

password entries on the user

screen?

OSCP

APM 53
38

Are user login and logout events

logged into a temporary database

system?

OSCP

APM 53
39

Are user login and logout events

logged with details such as a

timestamp, user ID, IP address,

and location?

Table 10. Access Control Secure Coding Checklist.

Sources No. Checklist

OSCP

AC 1
40

Does your web application system

rely on server-side objects or

tokens to make access control

decisions?

OSCP

AC 1
41

Does your web application system

sanitize all inputs used in

authorization decisions at both the

front-end and back-end?

OSCP

AC 1
42

Is the web application framework

utilizing built-in session

management to ensure sessions are

securely stored and transmitted?

OSCP

AC 1
43

Is your web application system

using a trusted and authorized built-

in session management library?

OSCP

AC 3
44

Does your web application system

implement a "deny by default"

policy?

OSCP

AC 3
45

Does your web application log

access control failures for

monitoring and auditing purposes?

OSCP

AC 4
46

Does your web application access

control use exception handling to

manage errors and prevent

exposure of internal system details?

OSCP

AC 4
47

Is there a monitoring system in

place to detect configuration access

failures?

OSCP

AC 7
48

Does your web application prevent

Path Traversal Attacks by properly

validating and sanitizing file paths?

OSCP

AC 7
49

Are file access restrictions enforced

to protect sensitive files (e.g., .env,

.git, config.php, package.json)?

OSCP

AC 11
50

Does your web application follow

the principle of least privilege,

ensuring users and services only

have the necessary access?

OSCP

AC 12
51

Is sensitive data securely encrypted

using AES for storage and bcrypt

for password hashing?

OSCP

AC 13
52

Does your web application

implement secure data retention

policies?

OSCP

AC 14
53

Is your web application

environment restricted to allowing

admin panel and server access only

to authorized personnel?

OSCP

AC 15
54

Does your web application code

enforce consistent access control

between the back end and front

end?

OSCP

AC 15
55

Are critical user interface security

actions enforced by server-side

code?

OSCP

AC 15
56

Is your access control logic

centralized in a single, consistent

logic file, avoiding duplication?

OSCP

AC 18
57

Does your web application enforce

rate limits for sensitive operations

such as login attempts, financial

transactions, or crucial API calls ?

OSCP

AC 18
58

Does your web application

implement CAPTCHA or MFA for

high-risk actions to prevent

automated attacks?

OSCP

AC 18
59

Does your web application include

logging and analytics to detect

abnormal patterns, transactions, or

activities?

OSCP

AC 19
60

Does your web application use

supplemental headers for

authorization, such as CSRF

protection and session validation?

OSCP

AC 20
61

Does the web application system

have a mechanism to force users to

re-authenticate when their

privileges change?

OSCP

AC 20
62

Does your web application

automatically log out users after a

period of inactivity?

OSCP

AC 22
63

Does your web application enforce

session termination when an

account is deactivated?

OSCP

AC 22
64

Does your web application’s logout

feature properly invalidate session

tokens to prevent reuse?

137 Secure Requirement Checklist and Secure Coding Checklist… (Anderies, et.al)

Table 11. Cryptographic Failures Secure Coding

Checklist
Sources No. Checklist

OSCP

CP 1
65

Should cryptographic operations be

performed on a secure, trusted server

rather than on the web application

client side?

OSCP

CP 1
66

Are cryptographic keys securely

stored in a dedicated key

management system instead of being

embedded within application code or

configuration files?

OSCP

CP 2
67

Are your web application secrets

stored securely and never hardcoded

in the source code?

OSCP

CP 2
68

Are secrets encrypted at rest using

strong encryption algorithms such as

AES-256?

OSCP

CP 2
69

Are secrets encrypted during transit

using TLS 1.2 or higher, including

TLS 1.3?

OSCP

CP 3
70

Does the web application implement

secure error handling to prevent

sensitive cryptographic errors from

being exposed?

OSCP

CP 3
71

Are system logs configured to

capture cryptographic failures

without exposing sensitive

information?

OSCP

CP 4
72

Are all random values (e.g., random

numbers, GUIDs, filenames, session

tokens) generated using a

cryptographically secure random

number generator (CSPRNG) rather

than non-secure functions such as

rand() in PHP or Math.random() in

JavaScript?

IV. CONCLUSION

Recently organizations, government and vendors

are evolving their information technology (IT)

infrastructure and trying to utilize digital platform such

as applications, artificial intelligence or automation

process where this rapid development is a great things,

however, this rapid development is not linearly

followed by protection in IT application security, in

this study the authors encourage utilization of secure

software development where the authors emphasize

security requirement practices (SREP) and security

coding practices (SCP) that has been compose by

author from international journal articles and

international standard (Open Web Application

Project), the authors also provide practical contribution

by combining and summarizing the practices into

actionable checklist. However, this study has certain

limitations such as limitation applicability to specific

regional area context, the actionable checklist hasn’t

been validated in real-world scenarios leaving room for

further refinement and testing.

REFERENCES

Anas, A., Elgamal, S., & Youssef, B. (2024). Survey

on detecting and preventing web application

broken access control attacks. International

Journal of Electrical and Computer Engineering

(IJECE), 14(1), 772–781.
Ayemowa, M. O., Ibrahim, R., & Khan, M. M. (2024).

Analysis of Recommender System Using

Generative Artificial Intelligence: A Systematic

Literature Review. IEEE Access.

Baz, A., Ahmed, R., Khan, S. A., & Kumar, S. (2023).

Security risk assessment framework for the

healthcare industry 5.0. Sustainability, 15(23),

16519.

Canavese, D., Regano, L., & Lioy, A. (2022).

Computer-Aided Reverse Engineering of

Protected Software. International Workshop on

Digital Sovereignty in Cyber Security: New

Challenges in Future Vision, 3–15.

de Vicente Mohino, J., Bermejo Higuera, J., Bermejo

Higuera, J. R., & Sicilia Montalvo, J. A. (2019).

The application of a new secure software

development life cycle (S-SDLC) with agile

methodologies. Electronics, 8(11), 1218.

Fitriani, R., Subagiyo, R., & Asiyah, B. N. (2023).

Mitigating IT Risk of Bank Syariah Indonesia: A

Study of Cyber Attack on May 8, 2023. Al-

Amwal: Jurnal Ekonomi Dan Perbankan

Syari’ah, 15(1), 86–100.

Gwon, Y. N., Kim, J. H., Chung, H. S., Jung, E. J.,

Chun, J., Lee, S., & Shim, S. R. (2024). The Use

of Generative AI for Scientific Literature

Searches for Systematic Reviews: ChatGPT and

Microsoft Bing AI Performance Evaluation.

JMIR Medical Informatics, 12, e51187.

Hazhirpasand, M., & Ghafari, M. (2021).

Cryptography Vulnerabilities on HackerOne.

2021 IEEE 21st International Conference on

Software Quality, Reliability and Security

(QRS), 18–27.

Humayun, M., Jhanjhi, N., Almufareh, M. F., & Khalil,

M. I. (2022). Security threat and vulnerability

assessment and measurement in secure software

development. Comput. Mater. Contin, 71, 5039–

5059.

Inggarwati, M. P., Celia, O., & Arthanti, B. D. (2020).

Online single submission for cyber defense and

security in Indonesia. Lex Scientia Law Review,

4(1), 83–95.

Javed, Y., Khayat, M. A., Elghariani, A. A., &

Ghafoor, A. (2023). PRISM: a hierarchical

intrusion detection architecture for large-scale

cyber networks. IEEE Transactions on

Dependable and Secure Computing, 20(6),

5070–5086.

Karthikeyani, R., & Karthikeyan, E. (2023). A Review

on Distributed Denial of Service Attack. Asian

Journal of Research in Computer Science, 16(4),

133–144.

138 JURNAL EMACS (Engineering, MAthematics and Computer Science) Vol.7 No.2 May 2025: 129-138

Khan, A. W., Zaib, S., Khan, F., Tarimer, I., Seo, J. T.,

& Shin, J. (2022). Analyzing and evaluating

critical cyber security challenges faced by

vendor organizations in software development:

SLR based approach. IEEE Access, 10, 65044–

65054.

Khan, R. A., Khan, S. U., Khan, H. U., & Ilyas, M.

(2022). Systematic literature review on security

risks and its practices in secure software

development. Ieee Access, 10, 5456–5481.

Kitchenham, B. A. (2012). Systematic review in

software engineering: where we are and where

we should be going. Proceedings of the 2nd

International Workshop on Evidential

Assessment of Software Technologies, 1–2.

Kitchenham, B., Brereton, O. P., Budgen, D., Turner,

M., Bailey, J., & Linkman, S. (2009). Systematic

literature reviews in software engineering–a

systematic literature review. Information and

Software Technology, 51(1), 7–15.

Li, Y., Ma, L., Shen, L., Lv, J., & Zhang, P. (2019).

Open source software security vulnerability

detection based on dynamic behavior features.

Plos One, 14(8), e0221530.

Pasquale, L., Alrajeh, D., Peersman, C., Tun, T.,

Nuseibeh, B., & Rashid, A. (2018). Towards

forensic-ready software systems. Proceedings of

the 40th International Conference on Software

Engineering: New Ideas and Emerging Results,

9–12.

Prasanna, S. R., & Premananda, B. S. (2021).

Performance analysis of md5 and sha-256

algorithms to maintain data integrity. 2021

International Conference on Recent Trends on

Electronics, Information, Communication &

Technology (RTEICT), 246–250.

Rajamäki, J., Wood, K., & Espada, B. (2024).

LOCKing Patient Safety: A Dynamic

Cybersecurity Checklist for Healthcare Workers.

European Conference on Cyber Warfare and

Security, 23(1), 811–815.

https://doi.org/10.34190/eccws.23.1.2072

Sadler, H. (2020). ER2C SDMLC: enterprise release r

isk-centric systems d evelopment and

maintenance life cycle. Software Quality

Journal, 28(4), 1755–1787.

Saeed, H., Shafi, I., Ahmad, J., Khan, A. A.,

Khurshaid, T., & Ashraf, I. (2025). Review of

Techniques for Integrating Security in Software

Development Lifecycle. Computers, Materials

& Continua, 82(1).

Singh, A., & Gupta, B. B. (2022). Distributed denial-

of-service (DDoS) attacks and defense

mechanisms in various web-enabled computing

platforms: issues, challenges, and future research

directions. International Journal on Semantic

Web and Information Systems (IJSWIS), 18(1),

1–43.

Yuryna Connolly, L., Wall, D. S., Lang, M., &

Oddson, B. (2020). An empirical study of

ransomware attacks on organizations: an

assessment of severity and salient factors

affecting vulnerability. Journal of

Cybersecurity, 6(1), tyaa023.

Zhan, X., Fan, L., Chen, S., We, F., Liu, T., Luo, X., &

Liu, Y. (2021). Atvhunter: Reliable version

detection of third-party libraries for vulnerability

identification in android applications. 2021

IEEE/ACM 43rd International Conference on

Software Engineering (ICSE), 1695–1707.

