JURNAL EMALCS

e-ISSN: 2686-2573
[Engineering, MAEhematics and Computer Science] \ol.7 No.2 May 2025: 129-138 DOI: 10.21512/emacsjournal.v7i2.13429

Combining Academia and Industry Approach for Secure
Coding and Requirements Checklist in S-SDLC:
Systematic Literature Review

Anderies'", Ika Dyah Agustia Rachmawati’, Kenny Jingga®, Calvin Linardy Candra*

L3Computer Science Program, Computer Science Department, School of Computer Science,
2 Cyber Security Program, Computer Science Department, School of Computer Science,
Bina Nusantara University,

Jakarta, Indonesia 11480

4Cyber Security Research, School of Information Technology,
Deakin University,
Waurn Ponds, Australia VIC 3216

anderies@binus.ac.id, ika.rachmawati001@binus.ac.id, kenny.jingga@binus.ac.id,
$224910144@deakin.edu.au

*Correspondence: anderies@binus.ac.id

Abstract — Rapid progress of digital transformation has
occurred across governments, organization and vendors
around the world. where this rapid digital transformation is
not linearly followed by the security protection of digital
infrastructure and its application. For example, in Indonesia
One of the largest banks was unable to operate its online and
physical services for three consecutive days due to a cyber-
attack. And many international organizations also
experienced the same thing or even worse like bankruptcy.
Because of this phenomenon the authors have performed a
systematic literature review and identified there are two
important phases namely requirement and coding in secure
software development lifecycle (S-SDLC). In this study the
authors compose 18 Secure Requirement practices (SREC)
and 72 Secure Coding Checklist (SCOC) checklist based on
Combining previous academia research study and
international standard of open secure coding practices
(OSCP) in which we target the security vulnerable most
occurred to governments, organization and vendors around
the world according to Open Web Application Security
Project Foundation. This checklist can be embedded in the
Quality Assurance process to check in sequence whether the
Requirements and Coding that are produced are safe or not
from the cyber-attack. Additionally, the checklist approach is
simple to understand and can be implemented to a popular
public consumer automation testing tools enabling faster
software development while maintaining sofiware security.

Keywords: Cyber Security; Secure Sofiware Development
Lifecycle; Software Engineering; Systematic Literature
Review

I. INTRODUCTION

Secure Software Development Lifecycle (S-SDLC)
is currently neglected by most organizations, vendors
and government and user itself. These parties are
forgetting that incorrect environment is potentially
resulting threats such as financial losses, operational

disruptions and reputational damage to the parties itself
(Humayun et al., 2022; Inggarwati et al., 2020; A. W.
Khan et al, 2022). In May 2023, Bank Syariah
Indonesia, one of the largest financial institutions in
Indonesia, fell victim to a ransomware attack
orchestrated by the cybercriminal group LockBit 3.0.
The attackers claimed to have exfiltrated 1.5 terabytes
of sensitive data, including records of 15 million
customers, and threatened to disclose the information
unless a ransom was paid. This cyberattack resulted in
the disruption of BSI’s banking services, rendering both
mobile and physical transactions inaccessible to
customers. Consequently, the incident inflicted
substantial financial losses and severely compromised
the institution’s reputation, highlighting critical
vulnerabilities in the cybersecurity framework of the
banking sector (Fitriani et al., 2023).

Research claims by H. Sadler (Sadler, 2020) state
that secure software development lifecycle
environment or S-SDLC is necessary to avoid many
external threats. It supports developers to build secure
software applications while also enhancing their skill,
competencies and productivity which impacted many
aspects in software development (Saeed et al., 2025).

Advancements in Information and Communication
Technology (ICT) have transformed various aspects of
human life, from daily activities to critical sectors such
as healthcare, finance, and other essential works. These
activities often rely on software applications, making
the security aspect of software applications important.
Additionally, software applications are typically
interconnected with other applications, which underline
the importance for governments, organizations and
vendors to implement a Secure Software Development
Lifecycle (S-SDLC) (de Vicente Mohino et al., 2019).

Copyright © 2025 129

Due to lack of concern in S-SDLC that may threaten
Confidentiality, Integrity, Availability and Valuable
(CIAYV) Resources for governments, organization and
vendors. In this study the authors want to perform a
Systematic Literature Review (SLR) on S-SDLC and
inform what faces organization, vendors and firm if
they are neglecting the S-SDLC (B. Kitchenham et al.,
2009; B. A. Kitchenham, 2012). and introduce insight
of comprehensive security checklist for S-SDLC that
derived from systematic literature review and
international security standard to mitigate security
issues and cyber-attack to software application. The
author also utilizes the Retrieval Augmented
Generative (RAG) Artificial Intelligence product to
perform searching, collecting and filtering the primary,
review and SLR research study. In purpose of
improving quality of articles collection and information
to answer Research Questions (Ayemowa et al., 2024;
Gwon et al., 2024).

We use checklist approaches because we aim for
simplicity of practical uses and implementation
purposes yet proven and beneficial on the field, several
studies also use checklist approaches for their ICT
Infrastructure in the healthcare industry to mitigate
cyber-attack (Baz et al., 2023; Rajamaéki et al., 2024).

The remainder of this paper is structured as follows:
Section 2 provides details on phases of SLR conducted.
Methods and research study to answer two research
questions about security issues, cyber-attack and S-
SDLC in Section 3. Section 4 is Result and Discussion
which Introduce a minimalistic S-SLDC with checklist
approach from international previous study and
international standard. Section 5 of this study.

II. METHODS

A Systematic Literature Review a.k.a SLR was
selected to be foundation of the research methodology
on this study review, because SLR shown of credibility
in the process of development article collection and
reducing interpersonal-bias, However the authors are
performing smaller enhancement for the SLR method
rigorously and having alignment with the objective
which is finding reliable, latest and trusted sources of
the study. According to Kitchenham an SLR has three
main phases (B. Kitchenham et al., 2009; B. A.
Kitchenham, 2012). The first is planning, conducting
and the third answering. see Table 1 for the details.

Table 1. SLR Phases

Phases Sub Phases

Planning e Research Question

e Study Sources

e Inclusion and
Exclusion Criteria

e Secarch Strings

e Al Prompting String

e Study Selection by
Matching Abstract
with Authors
keywords

Conducting e Filter and Selecting

the study
e Reading the study
content
Answering e Answering Research
Question

e Making Responsible
Insight and Comments

2.1 Planning Phase

2.1.1 Research Question.

The current study conducted a modified SLR, there
are two research questions that were answered in this
study:

e RQI1: What threat do organizations, firms, or
vendors face if they neglect the Secure
Software Development Life Cycle (S-SDLC) ?

e RQ2: What Secure Software Development
Lifecycle practices should be implemented
during requirement engineering and coding
stages to mitigate the security threat ?

2.1.2 Study Sources.

In this study, the paper is gathered by manual
search, there are total of six digital repositories were
chosen, the following are scholarly digital sources that
were chosen:

1. MDPI

2. Google Scholar

3. Science Direct

4. Springer Link

5. Wiley Online Library
6. ACM Digital Library

2.1.3 Search String. In this study the paper using
search strings for searching in scholarly database as
follows:
1. Secure Software Development
Software Development Lifecycle
Cyber Security Condition
Standard of Application System
Security Solution
Software Application
Global Software Development

Nk v

2.1.4 AI Prompting String.

Generative Artificial Intelligence (GAI) has been
transformed into Retrieval-Augmented Artificial
Intelligence (RAG) which can perform a combination
of operations like searching on the internet, thinking,
and summaries. This RAG also showed potential in
aiding systematic literature reviews according to
several current latest study in literature review
(Ayemowa et al., 2024; Gwon et al., 2024).

For the objective of improving the quality of
answering research questions the authors utilize this
popular Retrieval Augmented Generative (RAG) to
perform deep filtering, summarizing and gaining
insight from primary and secondary study. The authors
perform prompting string as follows:

130 JURNAL EMACLS [Engineering, MAthematics and Computer Science] Vol.7 No.2 May 2025: 129-138

1. “Make sure the information and reference are
from popular journal or international
conference indexed by Scopus”

2. “Can you reference the real example from
popular open access journal?”’

3. “Please give me the example of (keyword)
from credible journal or sources ?”

4. “Can you find and answer these (keyword)
scientifically using references from popular
and credible journal ?”

5. “Search for me the 10-20 journal Scopus
indexed related to (keyword)?”

2.2 Inclusion and Exclusion Criteria

2.2.1 Inclusion Criteria
For data Inclusion, we adopted the following
guidelines-based parameters used by other researchers:
1. Papers must be written in English.
2. Papers were published between 2000 to 2024.
3. Articles related to the domain of Secure
Software Development or Threat to Software
Application.
4. Articles related to Cyber Security.
5. Articles related to Cyber Attack.

2.2.2 Exclusion Criteria

The authors followed the guidelines based on
parameters used by other researchers:

1. Papers that don’t deal with secure software
development lifecycles.

2. Papers that don’t mention any secure or
software risk keywords

3. Publications are not peer-reviewed and do not
conform to a complete book's abstract, an
editorial, or a letter.

4. Paper is not written in English

5. Duplicate papers were not considered.

2.2.3 Conducting Phase

In the conducting phase we utilize several tools
such as Preferred Reporting Items for Systematic
Reviews and Meta Analyses (PRISMA) and Retrieval
Augmented Generation (RAG) Searching and
Filtering. PRISMA methodology is valuable tool to
conduct systematic review and meta-analysis or SLR
in different fields, including the computer science
study and its branch knowledge (Javed et al., 2023).

Figure 1 shows the PRISMA process that authors

perform there are four phases as follows:

A. Phase 1 : using search string and prompting
string to find related articles.

B. Phase 2 : Perform Inclusion and Exclusion
Criteria based on articles abstract and articles
full-body.

C. Phase 3 : Perform full-abstract and skim reading
on the articles body.

D. Phase 4 : Final collection of primaries study and
Systematic Literature Review studies.

Perform Search String on
Scholarly Source Database
(n=800-~)

|

Perform Inclusion & Exclusion
Criteria based on abstract articles
(n=300~)

Removed
(n=150~)

Y

y

Perform full-abstract and skim
reading on the articles body
manually and utilize RAG

(n=150)
Removed article that are not
> relevant for RQ
) 4 (n=122)

Manually Checking Journal
Credibility for answering RQ
(n=28)

|

Manually Searching for Supporting
Statement

(n=12)

Figure 1. The PRISMA Process of relevant literature
Review

Thanks to the advancement of Generative Al, the
author is possible to perform phase 1 and 2 which
consist of performing inclusion and exclusion criteria
on the body because we have power of quick
summarative to assist the author perform deep
inclusion and exclusion criteria to find good quality of
articles that match our research questions.

2.3 Answering Phase

In answering phase, the authors utilize the source
from reputable international journal articles,
international conference Scopus indexed and S-SDLC
reputable security guidelines to provide information
and insight for the author to answer research questions.
in RQ 1 author’s make a list of tables that cyber threat
may occur to organizations if neglecting the S-SDLC,
in RQ 2 the author utilizes many guideline and journal
articles and translate it into actionable checklist table
for requirement and coding stages. This research
questions review isn’t limited to S-SDLC within
specific industries as a result, the insights derived are
more generalized and may apply to any organizations,
firms and vendors.

III. RESULT AND DISCUSSION

RQ 1: What threat do organizations, firms, or vendors
face if they neglect the Secure Software Development
Life Cycle (S-SDLC)?

Ignoring Secure Software Development Lifecycle
(S-SDLC) can expose companies to various threats,
including data breaches, financial losses, operational
disruptions and reputational damage. failure to
compose SDLC with security concern can lead to
several issues unpredicted problem, many
organizations prioritize security as an afterthought

Secure Requirement Checklist and Secure Coding Checklist... (Anderies, et.al) 131

using motto “patch and penetrate” strategy, resulting in
increased cost and unpredictable timeline or even
launch before it’s ready (Humayun et al., 2022).

These various threats are categorized into issues by
previous research (A. W. Khan et al., 2022), that claims
there are 13 main cyber security issues and challenges
faced by vendors and organizations from 67 research
studies, the most common issues/challenges were
related to 1) cyberattacks, 2) lack of right knowledge
and 3) lack of management. In Table 2, it shows the
three potential issues and its sub issues that
organization will face if neglecting the secure software
development lifecycle (S-SDLC) according to Khan et
al. (2022) study. The author performs in-depth reviews
with the potential impact to organization, firms and
vendors.

The main issue / challenges faces is access of
cyberattacks. The most sub issues of cyberattack
frequent is injection type of attack such as SQL
Injection surveyed by OWASP. It’s the third ranked
attack in 2021 and the number one cyberattack in 2020.
When Software application gets SQL Injection, the
impact of application is unpredictable.

Table 2. Top Ranking Cyber Security Issues

No Issues Sub-Issues
Cyber Attacks ~ SQL Injection
- Broken Access Control
1 (Khan et al, . . .
2022) - Distributed Denial of Service
(DDoS)
- Third Party Integrating
Vulnerabilities
Lack of . . .
- Easier Reverse Engineering
Knowledge . :
2. - Hardening Forensics/
(Khan et al, o .
2022) Monitoring Fa}lure§
- Cryptographic Failure and
Encryption at rest Failure
3 Lack of : ISr:)ScilqaelrEAntt?lf]e(erin
’ Management & &

- Misconfiguration Security

The hackers are able to retrieve all user data or even
whole database, resulting in a data breach, which can
be exacerbated by severe injection vulnerabilities.
Additionally, the attacker may execute arbitrary
changes using queries such as Insert, Alter, or even
Drop query. If these actions occur, the potential
financial losses for the company become highly
unpredictable. Attackers could delete data, steal
information, damage systems, and execute malicious
commands, leading to significant financial,
operational, or reputational damage to the company.
several cyber-attacks that may occur to firms and
organizations are Broken Access Control (Anas et al.,
2024) dan Distributed Denial of Service (Karthikeyani
& Karthikeyan, 2023; Singh & Gupta, 2022; Yuryna
Connolly et al., 2020). and this cyber-attack is in line
with OWASP 2021 report.

Broken Access Control (BAC) is a serious software
application vulnerability stated by the previous
research. BAC allows unauthorized users to bypass
permissions and perform unauthorized actions leading
to data breaches, breaking data integrity and privacy
concerns. BAC enables user to be authenticated as
another user or higher access user. lack of concern S-
SDLC affecting software application has vulnerability
in code or the weakness on user process causing user
able to perform such actions (Anas et al., 2024). The
Distributed Denial of Services (DDoS) technically
cannot be eliminated, however it can be mitigated and
reduced through various strategies that will be
discussed in RQ2.

The second main issues of not implementing the
Secure Software Development Life Cycle (S-SDLC):
Lack of Knowledge, this is refers to a deficiency in
understanding various aspect such as intellectual
property rights, software products and third party
application development domain which impacted to
Unauthorized Access, Easier Reverse Engineering and
Hardening Forensics / Monitoring Failures and
Cryptographic Failure which reducing significant
integrity of whole software products and it’s
organization.

The emerging of open-source libraries,
components, software and application led some
organizations, firms and vendors to rely on these
services to build their software application efficiently
and effectively. They also connect their software
application to the service like online storage services,
payment gateway services, and other services. These
services are known as software, platform or code as
services. However, they are unaware that the services
they are integrating have security vulnerabilities in the
integrating process that makes cyberattack scenario
awaiting them. This security issue the authors refers to
as Third Party Integrating Vulnerabilities. These
vulnerabilities are sometimes fatal because
unexperienced hacker can land cyber-attack without
the organization knowing it and this becomes concern
of some previous research in academia, technologies
founders and leading technology industry (Li et al.,
2019; Zhan et al., 2021). Implementing S-SDLC may
significantly reduce this Third-Party Integrating
Vulnerabilities.

Reverse Engineering in context of software
application, reverse engineering is a process of
reconstruct and analysis an existing software
application. This process is able to reconstruct the
software structure, components, decoding source code,
understanding the algorithms and documenting
software key functions, therefore this technique could
threaten an organization, firms and vendors that benefit
their competitor to re-produce the software or crack the
software which impacted to financial losses and
integrity of respected organizations. Due to lack of
knowledge, software applications become easier to
perform reverse engineering, and the software
application appears exposed to competitors and

132 JURNAL EMACLS [Engineering, MAthematics and Computer Science] Vol.7 No.2 May 2025: 129-138

hackers. Reverse engineering with combination of
security misconfiguration and S-SDLC may land fatal
damage to an organization (Canavese et al., 2022).

Forensics in software engineering involves
ensuring that software systems are capable of
supporting digital investigations or in general forensics
is a science process to investigate and verify claims to
uphold the justice with non-repudation characteristics.
Forensics activity in the context of software
applications is performing logging, monitoring
activities, ensuring data integrity and maintaining clear
audit of spesific action in software application. These
forensics in software application environment play a
significant role to cyber-crime investigation, due to
lack of knowledge, monitoring system and logging has
become chaotic and hard for people to analyze and
investigate the perpetrator and what kind of attack that
prepetrator landing to organizations, firm and vendors,
this investigation is essential for mitigating the issues
occured. Some organizations are not even aware of this
logging standardization in context of where, what kind
of format and how long the logging is stored. worse
than that this logging system doesn’t even exist in
software application which impacted to Hardening
Forensics Process and Monitoring Failure or even
worse, the attacker maintaining sustainable access to
specific organization (Pasquale et al., 2018).

Cryptographic Failures, as mentioned by the Open
Web Application Security Project (OWASP) refer to
issues related to incorrect implementation or use of
cryptographic systems that can lead to security
vulnerabilities. These issues are included in the
OWASP Top 10 list, which identifies the most critical
and common security risks to software application.
Cryptographic failures are caused by several events
such as Insecure Cryptographic Storage, Outdated
Algorithms, Improper Key Management, Encryption at
Rest Failure, Insecure Transmission Protocol
(Hazhirpasand & Ghafari, 2021). A previous study
defines cryptographic failures as the incorrect usage of
cryptography which can leave sensitive data vulnerable
to exposure. The paper discusses instances such as the
use of outdated cryptographic algorithms such as MD5
and SHA-1 which are known to be susceptible to
attacks and highlights the need for using stronger
alternatives like SHA-256 (Prasanna & Premananda,
2021). See Table 3 to prevent cryptographic failure
issues.

Table 3. Cryptographic Failure Issues with its

Prevention

Prevention
Encrypt Sensitive Data
Proper Key Management
Use Storing Hashing Functions such as
berypt, scrypt and Argon2
Avoid Deprecated Algorithms such as
MDS5 and SHAI
Authenticated Encryption
Disable Caching for Sensitive Data

Issues

Cryptographic
Failure

Lack of Management refers to a critical challenge
identified in Khan et al (2022) research indicating a
deficiency in focusing requirements, managing issues,
careless behavior of developers which related to
insider threat.

Business Processes (BP) are considered
cornerstone of organization and lack of management
refers to a critical challenge identified in study by Khan
et al (2022). These processes are often translated into
software applications, and they are non-risk-free in
terms of software security. An example is the attack of
compromise of a business process, which takes
advantage of system loopholes what is commonly
known in cyber security Insider Attack, this loophole
instead of being reported, however it’s exploited.

In the study of Khan et al, they are analyze 121
studies and found 424 best practices that may help
organization for developing a secure software
application, one of the essential phase that may define
a sofware application for organization is Requirement
Engineering, therefore the authors filter the Secure
Requirement Engineering Practice (SREP) from Khan
systematic literature review study based on the most
top frequency used in 121 primary study, which is
identified as SREP1 ranked first, SREP2 ranked 2 and
SREP 4 ranked 3 (R. A. Khan et al., 2022).

Table 4. Secure Requirement Engineering Practices.

SREP1 Develop Threat Modelling (Freq : 25)

SREPI.1 Perform STRIDE

SREP12 Inclufie security requirements as part of
defining functional requirements

SREP 1.3 Perform DREAD

SREP 1 4 Understand and Incqrporate Compliance
and Regulatory requirements
Security Requirement Elication

SREP2 Practices (Feq : 31)

SREP2.1 Ehcl.t and categorize safety and security
requirements

SREP2.2 Take 1r.1t.o cgns1derat10n organizational
and political issues
Use scenarios to elicit sensitive data and

SREP2.3 commgnl({atlon n ter'ms authentication,
authorization, privacy, system
maintenance

SREP2.4 Identifty Stakeholders.

SREP2.5 Identify the operationg environment of
system.

SREP11 ngthods used in Security RE (Freq :

SREP11.1 UMLSec, SecuretUML

SREP11.2 Secure Troops

SREP11.3 Abuse Cases

SREP11.4 Structure Object Oriented Formal
Language

SREPI11.5 Machine Learning Techniques

SREP11.6 Fuzz-Analytic Hierarchy Process

SREP11.7 Security Requirement Engineering
Approach

SREP11.8 Problem Frames

SREP11.9 Tropos (i’ framework)

SREPI11.10 Create and describe Misuse Cases

Secure Requirement Checklist and Secure Coding Checklist... (Anderies, et.al) 133

In Table 4 there are SREP that the authors filter it PL16 Have security requirements been defined as
by top frequency and select to retrieve the keyword SREP functional requirements?
STRIDE, DREAD, Identification and Threat, in reason 11.17 i i
that the authors want to convert SREP to actionable PL17 Have the Security Quality Assurance and
checklist that must be employed within SSDLC from ?{U;:P Produgthartl)ager ﬁnka lized th.e report En
SREP 1.1 to SREP 1.4 and Practice List (PL) and make SRE?’l potential cyber-attack scenarios and the
. . . consequences of neglecting each
an checkhst. shq\yn in Table 5 and after that summarize 113 requirement?
and categorize it into Table 6 for easier implementation SREP2.
purpose. 2
Table 5. Secure Requirement Practice Checklist ZREPZ'
No. Checklist PL18 Does the report include misuse cases and
PLI Have the organization's SREPL abuse cases?
S components/services been conceptually 1.10
REP1. . 113
1-14 mapped. along with other connected
applications?
PL2 Have all organizational assets or resources Table 6. Summary of Secure Requirement Checklist
SREP1. connected to the software application been - -
1-14 identified and listed? 1 Identification
PL3 Has threat modeling, including specific SREC Have the components/services of the
SREPI1. cyber-attack scenarios, been defined for the 1 or gamzaﬂon been concept.ual!y mapped along
1-14 software application? with other conne.cte(.i applications?
PL4 Is the Security QA team aware of the SREC Have all organizational assets or resources
SREP2. system's security requirements? 5 f:onne.:cted to t.he software application been
1 identified and listed?
PL5 Is the product manager aware of the 2 Reports
SREP2. system's security requirements? SREC Has threat modeling and its specific cyber-
1 3 attack scenarios been defined for the software
PL6 Have the Security QA and Product application?
SREP2. Manager listed the types of risks, severity Have the Security QA and Product Manager
2 levels, nature, security priorities, etc.? SREC completed the listing of risks, including their
PL7 Have all security requirements been 4 type, severity level, nature, security priority,
SREP2. defined and categorized? etc.?
1 Have the Security QA and Product Manager
PL8 Have the Security Quality Assurance and SREC created a report on potential cyber-attack
SREP2. Product Manager prepared a report on 5 scenarios and the consequences of neglecting
2, potential cyber-attack scenarios and their each defined security requirement?
SREP2. consequences if security requirements are Have the Security QA and Product Manager
4 neglected? SREC finalized the report on potential cyber-attack
PL9 Has stakeholder analysis (using a Power- 6 scenarios, along with the consequences of
SREP2. Interest chart) been conducted to facilitate neglecting each defined requirement?
2 the implementation of security SREC Does the report include misuse cases and abuse
SREP2. requirements? 7 cases?
4 3 Awareness and Informed
PL10 Has the Product Owner been informed of SREC Is the Security QA aware of the security
the reports? 8 requirements for the system?
PLI11 Have high-influence stakeholders been SREC Is the Product Manager aware of the security
informed about the reports? 9 requirements for the system?
PLI12 Have security requirements been revised to SREC Has stakeholder analysis with a Power-Interest
mitigate the identified risks? 10 chart been performed to support the
Have the revised security requirements implementation of security requirements?
PL13 been incorporated into the functional SREC Has the Product Owner been informed about
requirements, including Security 11 the reports?
Acceptance Criteria? SREC Have high-influence stakeholders been
PL14 Are personnel responsible for modeling and 12 informed about the reports?
SREP1 design implementing UMLSec, Secure SREC Do the reports include frameworks such as
1.1 UML, or SecureTroops? 13 UMLSec, SecureUML, or Secure Tropos?
SREP1 Are individuals involved in modeling and
1.10 SREC coding aware of common AI/ML
PL15 Are personnel involved in modeling and 14 implementations to handle cyber-attack
SREP!l coding aware of common AI/ML scenarios?
1.5 implementations to address cyber-attack 4 Requirements
SREP1 scenarios? SREC Have all security pre-requirements been
1.16 15 defined and categorized?

134 JURNAL EMACLS [Engineering, MAthematics and Computer Science] Vol.7 No.2 May 2025: 129-138

SREC Have the security requirements been OSCP IV Are URLs and parameters

16 restructured to mitigate the identified risks? 3 11 validated and sanitized upon
Have the security requirements been receipt by the web API?

SREC incorporated into the overall requirements with OSCP IV Are all HTTP header responses to

17 Security Acceptance Criteria as the final 9 12 the API validated and restricted to

functional requirement? the ASCII character set?
SREC Have the security requirements been defined OSCP IV Is redirect URL data validated
18 alongside functional requirements? 10 13 before being processed or
L . executed?

Tg answer Fhe research questloq in Secu're.: Coding OSCP IV Are all HTML form inputs
Practice to avoid cyber-attack security we utilize Open 11,12, 14 validated for data type, range, and
Web Application Security Project (OWASP) 13 length prior to submission?
guidelines in Secure Coding Practices. OSCP IV Does the front end enforce correct

. . 15 input types using appropriate
.In OWASP Secu.re delng Practice there are 14 14 H?ML fi?m elemengts? PPIop
Sectlon.. 1) .Input Validation, 2) Output Encodlng,. 3) If special or hazardous characters
Authentication and Password Management, 4) Sess1qn OSCP IV 6 must be used as input, is there a
Management, 5) Access Control, 6) Cryptographic 15& 16 specific function in a centralized
Practices, 7) Error Handling and Logging, 8) Data file to handle them?
Protection, 9) Communication Security, 10) System
Configuration, 11) Database Security, 12) File Table 8. Output Encoding (OE) Secure Coding
Management, 13) Memory, 14) General Coding Checklist
Practices. From these 14 sections the authors determine Sources No. Checklist
to make checklist from Input Validation Secure Coding Is all output engoding peyformed
Checklist in Table 7, Output Encoding (OE) in Table OSCP 1g ©on the server side, ensuring that
8, Authentication and Password Management Secure OE 1 nﬁ’ el;_COdm% lgglc is delegated to
Coding Checklist in Table 9, Access Control Secure the client side?
. . . Is there a standardized and well-
Coding Checklist Table 10, Cryptographic Secure L
. hecklist i ble 11 OSCP 19 tested encoding library used for
Coding Checklist in Table 11. OE 2 all web application output
Table 7. Input Validation Secure Coding Checklist encoding operations? :
Are encoding and decoding
Sources No. Checklist OSCP 20 operations for both the web
OSCP IV Are all input fields in the web OE 3,5 application’s API and interface
182 1 application’s form tags validated set to UTF-8?
on the front end? OSCP 21 Have all inputs to database
OSCP IV) Is the web application’s API hosted OE 6 queries been properly sanitized?
1&2 on a trusted server? Have all inputs and outputs
Is the web application’s API OSCP connecting the web application
OSCP IV . : . OE4,5, 22 . eal
1 &2 3 V}?lldatﬁ(} for each{)mput submitted 7 system to third-party applications
through form tags’ been sanitized?
Are all file upload forms in HTML
OSCP IV . . . o
1 &2 4 strictly validated to permit only Table 9. Authentication & Password Management
allowed file types and formats? Secure Coding Checklist
OSCP IV Does]the Wffl]) a;ppllc?atlon }}11ave]a Sources No. CheckKlist
3 > centra %?d. e ?catlon r)to andle OSCP Are all authorized pages protected
accepta < Input formats? - APM 23, 23 using a middleware-based strong
Are all input and output data in 26,27 authentication system?
OSCP IV both the web API and front-end P -
6) . Does the authentication system in
4,5,8 interface properly encoded in UTF- OSCP . .
24 the middleware comply with
8? APM 23 .
e . m security standards?
OSCP 7 7 Is ; ¢ mpult. an.d ?utpuzprlom ¢ (ei OSCP Is the authentication API system
we application's an APM 23 25 hosted on a trusted server?
interface encoded in UTF-8? & 24
Does the web APL application usea OSCP Is your server provider using
centralized template for handling o
) ., . APM 23& 26 secure communication protocols
OSCP 6 8 input rejection, complete with
: 24 (e.g., HTTPS)?
standardized messages (e.g., -
. . OSCP Is your server accessible?
middleware or centralized file)? APM 23 27
OSCP IV Are .HTTP headers, such as Does the web application API
8 9 Cookies, User-Agent, Referer, and OSCP ensure that authentication failure
others, validated and sanitized? APM 28, 28 messages do not reveal specific
OSCP IV 10 Are URLs and parameters sanitized OSCP33 failureg details? P
X o ?
8 before being sent to the web API? OSCP i Does your web API properly clear
APM 28 all session data upon logout?

Secure Requirement Checklist and Secure Coding Checklist... (Anderies, et.al)

135

OSCP Does your web API enforce an 0SCP Is there a monitoring system in
APM 28, 30 entry rate limitation for AC 4 47 place to detect configuration access
OSCP41 authentication attempts? failures?

Does the web API use strong Does your web application prevent

OSCP OSCP

hashing functions with a write- 48 Path Traversal Attacks by properly

APM 30 31 . .. AC7 S 5
&31 only method for storing sensitive validating and sanitizing file paths?
data? 0SCP Are file access restrictions enforced

Does the web API sequentially 49 to protect sensitive files (e.g., .env,

OSCP Lo ; AC7 . o
APM 32 32 process all authentication inputs it .git, config.php, package.json)?

receives? Does your web application follow
If your web API is connected to OSCP 50 the principle of least privilege,

OSCP 33 external systems, is there an AC 11 ensuring users and services only

APM 34 authentication system in place for have the necessary access?
those connections? 0SCP Is sensitive data securely encrypted
Are HTTPS POST requests used 51 using AES for storage and berypt
OSCP . o AC 12 D
APM 36 34 to t_ransmlt authentication for password hashing?
credentials? Does your web application
- OSCP . .
If your system transmits AC 13 52 implement secure data retention
temporary passwords, are they policies?

OSCP . —
APM 37 35 encrypted, transmitted over Is your web application

HTTPS, and accessible only to OSCP 53 environment restricted to allowing
authorized users? AC 14 admin panel and server access only

OSCP Does your web API enforce to authorized personnel?

APM 38 36 specific password complexity Does your web application code
& 39 requirements? OSCP 54 enforce consistent access control
Does your web interface obscure AC 15 between the back end and front

OSCP .

APM 40 37 password entries on the user end?
screen? Are critical user interface security
- OSCP . .
Are user login and logout events 55 actions enforced by server-side

OSCP . AC 15 o

APM 53 38 logged into a temporary database code?
system? OSCP Is your access control logic
Are user login and logout events AC 15 56 centralized in a single, consistent
OSCP 39 logged with details such as a logic file, avoiding duplication?
APM 53 timestamp, user ID, IP address, Does your web application enforce
and location? OSCP 57 rate limits for sensitive operations
AC 18 such as login attempts, financial
Table 10. Access Control Secure Coding Checklist. transactions, or crucial API calls ?
_ Does your web application
Sources No. Checkllst i OSCP 58 implement CAPTCHA or MFA for
Does your web application system AC 18 high-risk actions to prevent
OSCP rely on server-side objects or automated attacks?
40 ——
AC1 tokens to make access control Does your web application include
decisions? _ OSCP 59 logging and analytics to detect
Does your web application system AC 18 abnormal patterns, transactions, or
OSCP 41 sanitize all inputs used in activities?
AC 1 authorization decisions at both the Does your web application use
front-end and ba?k"?nd? OSCP 60 supplemental headers for
Is the web application framework AC 19 authorization, such as CSRF
OsCp ,, utilizing built-in session protection and session validation?
AC 1 management to ensure sessions are Does the web application system
securely stored and "tran'smitted? OSCP 61 have a mechanism to force users to
Is your web application system AC 20 re-authenticate when their
OSCP . . . dat
AC | 43 using a trusted and authorized built- privileges change?
in session management library? 0SCP Does your web application
Does your web application system 62 automatically log out users after a
OSCP . " " AC 20 . s
AC 3 44 1mplement a "deny by default period of inactivity?
policy? — OSCP Does your web application enforce
Does your web application log 63 session termination when an
OSCP . AC22 . .
AC3 45 access control ”fallures for account is deactivated?
monitoring and audm.ng PUYPOSCS? OSCP Does your web application’s logout
Does your web application access AC2y 64 feature properly invalidate session
OSCP 46 control use exception handling to tokens to prevent reuse?
AC4 manage errors and prevent

exposure of internal system details?

136 JURNAL EMACLS [Engineering, MAthematics and Computer Science] Vol.7 No.2 May 2025: 129-138

Table 11. Cryptographic Failures Secure Coding
Checklist
Checklist
Should cryptographic operations be
OSCP 65 performed on a secure, trusted server
CP1 rather than on the web application
client side?
Are cryptographic keys securely
stored in a dedicated key

Sources No.

OCSPCIP 66 management system instead of being
embedded within application code or
configuration files?

Are your web application secrets

OSCP

67 stored securely and never hardcoded

CP2 .
in the source code?

Are secrets encrypted at rest using

OSCP . .

CP2 68 strong encryption algorithms such as
AES-256?

OSCP Are secrets encrypted during transit

CP2 69 using TLS 1.2 or higher, including
TLS 1.3?

Does the web application implement

OSCP secure error handling to prevent

CP3 70 sensitive cryptographic errors from

being exposed?

Are system logs configured to
OSCP 71 capture cryptographic failures
CP3 without exposing sensitive

information?

Are all random values (e.g., random

numbers, GUIDs, filenames, session

tokens) generated using a
OSCP 7 cryptographically secure random
CP4 number generator (CSPRNG) rather

than non-secure functions such as

rand() in PHP or Math.random() in

JavaScript?

IV.CONCLUSION

Recently organizations, government and vendors
are evolving their information technology (IT)
infrastructure and trying to utilize digital platform such
as applications, artificial intelligence or automation
process where this rapid development is a great things,
however, this rapid development is not linearly
followed by protection in IT application security, in
this study the authors encourage utilization of secure
software development where the authors emphasize
security requirement practices (SREP) and security
coding practices (SCP) that has been compose by
author from international journal articles and
international standard (Open Web Application
Project), the authors also provide practical contribution
by combining and summarizing the practices into
actionable checklist. However, this study has certain
limitations such as limitation applicability to specific
regional area context, the actionable checklist hasn’t
been validated in real-world scenarios leaving room for
further refinement and testing.

Secure Requirement Checklist and Secure Coding Checklist

REFERENCES

Anas, A., Elgamal, S., & Youssef, B. (2024). Survey
on detecting and preventing web application
broken access control attacks. International
Journal of Electrical and Computer Engineering
(IJECE), 14(1), 772-781.

Ayemowa, M. O., Ibrahim, R., & Khan, M. M. (2024).
Analysis of Recommender System Using
Generative Artificial Intelligence: A Systematic
Literature Review. IEEE Access.

Baz, A., Ahmed, R., Khan, S. A., & Kumar, S. (2023).
Security risk assessment framework for the
healthcare industry 5.0. Sustainability, 15(23),
16519.

Canavese, D., Regano, L., & Lioy, A. (2022).
Computer-Aided Reverse Engineering of
Protected Software. International Workshop on
Digital Sovereignty in Cyber Security: New
Challenges in Future Vision, 3—15.

de Vicente Mohino, J., Bermejo Higuera, J., Bermejo
Higuera, J. R., & Sicilia Montalvo, J. A. (2019).
The application of a new secure software
development life cycle (S-SDLC) with agile
methodologies. Electronics, 8(11), 1218.

Fitriani, R., Subagiyo, R., & Asiyah, B. N. (2023).
Mitigating IT Risk of Bank Syariah Indonesia: A
Study of Cyber Attack on May 8, 2023. Al-
Amwal: Jurnal Ekonomi Dan Perbankan
Syari’ah, 15(1), 86—100.

Gwon, Y. N., Kim, J. H., Chung, H. S., Jung, E. J,,
Chun, J., Lee, S., & Shim, S. R. (2024). The Use
of Generative Al for Scientific Literature
Searches for Systematic Reviews: ChatGPT and
Microsoft Bing Al Performance Evaluation.
JMIR Medical Informatics, 12, e51187.

Hazhirpasand, M., & Ghafari, M. (2021).
Cryptography Vulnerabilities on HackerOne.
2021 IEEE 2lst International Conference on
Software Quality, Reliability and Security
(ORS), 18-27.

Humayun, M., Jhanjhi, N., Almufareh, M. F., & Khalil,
M. 1. (2022). Security threat and vulnerability
assessment and measurement in secure software
development. Comput. Mater. Contin, 71, 5039—
5059.

Inggarwati, M. P., Celia, O., & Arthanti, B. D. (2020).
Online single submission for cyber defense and
security in Indonesia. Lex Scientia Law Review,
4(1), 83-95.

Javed, Y., Khayat, M. A., Elghariani, A. A, &
Ghafoor, A. (2023). PRISM: a hierarchical
intrusion detection architecture for large-scale
cyber networks. [EEE Transactions on
Dependable and Secure Computing, 20(6),
5070-5086.

Karthikeyani, R., & Karthikeyan, E. (2023). A Review
on Distributed Denial of Service Attack. Asian
Journal of Research in Computer Science, 16(4),
133-144.

... (Anderies, et.al) 137

Khan, A. W., Zaib, S., Khan, F., Tarimer, 1., Seo, J. T.,
& Shin, J. (2022). Analyzing and evaluating
critical cyber security challenges faced by
vendor organizations in software development:
SLR based approach. IEEE Access, 10, 65044—
65054.

Khan, R. A., Khan, S. U., Khan, H. U., & Ilyas, M.
(2022). Systematic literature review on security
risks and its practices in secure software
development. leee Access, 10, 5456-5481.

Kitchenham, B. A. (2012). Systematic review in
software engineering: where we are and where
we should be going. Proceedings of the 2nd
International ~ Workshop on Evidential
Assessment of Software Technologies, 1-2.

Kitchenham, B., Brereton, O. P., Budgen, D., Turner,
M., Bailey, J., & Linkman, S. (2009). Systematic
literature reviews in software engineering—a
systematic literature review. Information and
Software Technology, 51(1), 7-15.

Li, Y., Ma, L., Shen, L., Lv, J., & Zhang, P. (2019).
Open source software security vulnerability
detection based on dynamic behavior features.
Plos One, 14(8), €0221530.

Pasquale, L., Alrajeh, D., Peersman, C., Tun, T,
Nuseibeh, B., & Rashid, A. (2018). Towards
forensic-ready software systems. Proceedings of
the 40th International Conference on Software
Engineering: New Ideas and Emerging Results,
9-12.

Prasanna, S. R., & Premananda, B. S. (2021).
Performance analysis of md5 and sha-256
algorithms to maintain data integrity. 2021
International Conference on Recent Trends on
Electronics, Information, Communication &
Technology (RTEICT), 246-250.

Rajaméki, J., Wood, K., & Espada, B. (2024).
LOCKing Patient Safety: A Dynamic
Cybersecurity Checklist for Healthcare Workers.
European Conference on Cyber Warfare and
Security, 23(1), 811-815.
https://doi.org/10.34190/eccws.23.1.2072

Sadler, H. (2020). ER2C SDMLC: enterprise release r
isk-centric systems d evelopment and
maintenance life cycle. Software Quality
Journal, 28(4), 1755-1787.

Saeed, H., Shafi, I., Ahmad, J.,, Khan, A. A,
Khurshaid, T., & Ashraf, 1. (2025). Review of
Techniques for Integrating Security in Software
Development Lifecycle. Computers, Materials
& Continua, 82(1).

Singh, A., & Gupta, B. B. (2022). Distributed denial-
of-service (DDoS) attacks and defense
mechanisms in various web-enabled computing
platforms: issues, challenges, and future research
directions. International Journal on Semantic
Web and Information Systems (IJSWIS), 18(1),
1-43.

Yuryna Connolly, L., Wall, D. S., Lang, M., &
Oddson, B. (2020). An empirical study of

ransomware attacks on organizations: an
assessment of severity and salient factors
affecting vulnerability. Journal of
Cybersecurity, 6(1), tyaa023.

Zhan, X., Fan, L., Chen, S., We, F., Liu, T., Luo, X., &
Liu, Y. (2021). Atvhunter: Reliable version
detection of third-party libraries for vulnerability
identification in android applications. 2021
IEEE/ACM 43rd International Conference on
Software Engineering (ICSE), 1695-1707.

138 JURNAL EMACLS [Engineering, MAthematics and Computer Science] Vol.7 No.2 May 2025: 129-138

