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Abstract –   Designing effective fuel subsidy policies is a 

major challenge for governments seeking to balance 

energy affordability, fiscal sustainability, and 

environmental goals. This study introduces an adaptive 

simulation framework combining Deep Q-Learning and a 

multi-armed bandit algorithm to model fuel consumption 

behavior and optimize subsidy distribution strategies. 

Moreover, this paper simulates a dual-agent system in 

which a DQN-based consumer interacts with a bandit 

driven government selecting among three subsidy policies: 

universal, quota-based, and targeted. By simulating 

consumer responses to universal, quota-based, and 

targeted subsidies over 1,000 episodes, the framework 

demonstrates how policy can adapt in real-time to 

maximize social welfare and reduce inefficient spending. 

Results show that while universal subsidies often deliver 

the highest consumer satisfaction, they incur significant 

fiscal costs, whereas quota and targeted approaches can 

yield more balanced trade-offs. The study highlights the 

potential of reinforcement learning to enhance adaptive 

policymaking in complex economic systems. To strengthen 

the analysis, the simulation tracks both consumer and 

government rewards across scenarios, capturing the 

trade-off between satisfaction and fiscal burden. 

Evaluation results reveal that targeted subsidies, though 

less popular, often provide more sustainable outcomes. 

The agent-based approach enables the system to 

dynamically adjust policy decisions based on real-time 

feedback, reflecting the evolving nature of economic 

behavior. These findings underscore the usefulness of AI-

driven simulations as decision-support tools in designing 

responsive and cost-efficient public policies. 

 
Keywords:  Reinforcement Learning; Bandit Algorithm; 

Fuel Subsidy; Policy Simulation; Q-learning 

  

I. INTRODUCTION 

Fuel subsidies remain a contentious yet pivotal 

tool in public policy, aimed at mitigating fuel price 

volatility and supporting lower-income households. 

However, globally, fossil fuel subsidies exceeded $7 

trillion in 2022 (Black et al., 2023), raising concerns 

about economic inefficiencies, regressive 

distributional effects, and environmental 

sustainability (International Monetary Fund, 2023). 

Universal subsidies, in particular, are widely 

criticized for disproportionately benefiting wealthier 

populations and distorting market incentives (Coady 

et al., 2015). 

To address these challenges, many countries have 

piloted or implemented more nuanced mechanisms. 

Indonesia and Iran, for instance, have experimented 

with quota-based and targeted subsidies to encourage 

conservation and better reach vulnerable groups. This 

paper draws from such real-world practices by 

analyzing three representative subsidy schemes: 

• Universal Subsidy: A flat-rate discount offered to 

all, regardless of income or usage level. 

• Quota-Based Subsidy: A capped subsidy only 

available up to a threshold of consumption, 

promoting frugality. 

• Targeted Subsidy: A means-tested benefit aimed 

at supporting low-income users. 

 

Policymakers are increasingly exploring adaptive 

subsidy schemes that dynamically adjust to 

socioeconomic and behavioral factors. This adaptive 

potential aligns closely with recent advances in 

artificial intelligence particularly reinforcement 

learning (RL) -which enables agents to learn optimal 

policies from interactions with their environment 

(Kalatzantonakis et al., 2023; Lee et al., 2024; Li & 

Yu, 2021). Additionally, multi-armed bandit (MAB) 

algorithms provide scalable strategies for optimizing 

decisions under uncertainty (Zhang et al., 2024). 

Energy costs are a key factor determining the 

success of businesses, particularly in energy-

intensive industries. An analysis of revenue shares 
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revealed that an increase in energy cost had a 

significant influence on the comparative net income 

(Herman et al., 2023). Therefore, energy-related 

costs should be properly managed, and recent studies 

show that such costs can be increasingly optimized 

through intelligent, machine learning-based 

frameworks (Durairaj et al., 2022). In addition, firms 

adopting renewable energy sources frequently 

experience cost reductions through enhanced 

resource efficiency and diminished waste, promoting 

reputation and regulatory compliance while 

improving financial health (Hulshof & Mulder, 

2020). 

The global adoption of digital transformation has 

reshaped Fintech, notably in information products. 

As emphasized in Wu and Pambudi (2025), Fintech 

software manufacturers offer flexible pricing and 

security measures to accommodate new business 

models, such as SaaS subscriptions or one-time 

purchases. This move emphasizes options pricing as 

a strategic tool for managing security, scalability, and 

customer value—not merely a revenue function. The 

authors show how pricing strategies like on-premises 

premium and SaaS subscription pricing impact 

market position and profitability. Furthermore, the 

interaction between existing and new vendors for 

original and new demand reveals how entering firms 

can use pricing flexibility to gain market share, while 

existing firms prioritize maintaining profitability 

through innovations and loyalty policies. Related 

work by Wu and Pambudi (2024) examines vendor 

behavior in a competitive two-stage setting, showing 

that product bundling and managing customer churn 

significantly influence profitability. Bundling 

enhances perceived value and customer retention, 

supporting cooperative outcomes in competitive 

markets. Similarly, Siavvas et al. (2020) emphasize 

the role of security services in mitigating network 

effects, where strategic security investments can 

boost profit margins even without directly countering 

competitors. However, this effect weakens when 

rivals offer significantly superior products. These 

studies all use modeling and simulation techniques to 

assess policies and decisions related to pricing, 

product design, and security in competitive 

environments, highlighting the critical role these 

strategies play in shaping profitability under digital 

transformation and market competition (Saeed et al., 

2024; Ogunleye et al., 2024). 

Additionally, the application of machine learning 

models like Random Forest has gained significant 

traction in areas such as credit risk management 

(Kuyoro et al., 2022), fraud detection (Liu et al., 

2015), and energy intensity analysis (Sahu & 

Pradhan, 2024), where such techniques are used to 

improve accuracy, feature relevance, and decision-

making. These predictive models play a crucial role 

in enhancing energy efficiency while simultaneously 

optimizing operational strategies (Nadkarni et al., 

2023; Rubio et al., 2021). Furthermore, machine 

learning techniques such as Random Forest are 

favored over other models like Gradient Boosting 

Machines for their interpretability and robustness to 

noise (Nadkarni et al., 2023). In financial analysis, 

these models are leveraged to assess energy 

consumption and security investments, where the 

combined effects significantly influence profitability 

(Siavvas et al., 2020). These prior works indicate the 

widespread use of modeling and simulation to assess 

optimal decisions across various domains, from 

pricing strategies to security and energy efficiency 

(Saeed et al., 2024; Ogunleye et al., 2024; Wu and 

Pambudi, 2023). 

While RL and MAB techniques have been 

applied in areas such as energy efficiency (Cunha et 

al., 2022), finance (Ni et al., 2023), and healthcare 

(Zhang et al., 2024), their use in simulating and 

optimizing adaptive fuel subsidies remains 

underexplored. This study addresses that gap by 

modeling a two-agent system: a DQN-based 

consumer interacting with a bandit-driven 

government subsidy policy selector. The simulation 

aims to know trade-offs between efficiency and 

equity across subsidy types and highlights the 

potential of machine learning for real-time economic 

policy design. The simulation reveals that while 

universal subsidies deliver consistent consumer 

rewards, they result in persistently negative 

government returns-highlighting a critical trade-off 

between political popularity and fiscal sustainability. 

The results demonstrate the viability of integrating AI 

into dynamic public finance simulations and inform 

future directions for policy reform. 

II. METHODS 

2.1. Environment Design 

The simulation environment is constructed as a 

stylized representation of a simplified economic 

interaction between a single consumer and a central 

government that implements fuel subsidy policies. 

The environment is framed as a discrete-time Markov 

Decision Process (MDP), where transitions occur 

across time steps 𝑡, driven by agent actions and 

stochastic state evolutions. 

The state at each time step is encoded as a 

continuous-valued vector 𝐬𝑡 ∈ ℝ3, composed of 

three normalized features: consumer income (𝑠𝑡
1), 

previous fuel demand (𝑠𝑡
2), and a fixed base fuel 

price (𝑠𝑡
3). These inputs capture both the economic 

capability of the consumer and the inertia of recent 

consumption behavior. All values are scaled to lie 

within the interval [0,1] for compatibility with neural 
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network-based agents and to ensure generality across 

diverse economic contexts. 

The action space 𝐚𝑡 ∈ {0,1, … ,9} represents 

discrete choices available to the consumer, where 

each action maps linearly to a fuel demand level 

ranging from 0 to a maximum quota of 50 units. 

Thus, action 0 corresponds to 0 units of consumption, 

while action 9 corresponds to the full quota. This 

discrete formulation simplifies learning and aligns 

with realistic policy levers such as rationed access to 

subsidized fuel. 

The government, acting as a policy setter, 

chooses one of three predefined subsidy mechanisms 

to influence the consumer's effective fuel price: 

• Universal Subsidy: Applies a flat discount of 0.3 

to all consumers, irrespective of income or 

consumption behavior. 

• Quota-Based Subsidy: Grants a discount of 0.2 

only when the fuel demand is less than or equal 

to 25 units, promoting conservation. 

• Targeted Subsidy: Allocates a larger discount of 

0.4 for consumers with normalized income levels 

below 0.5, simulating needs-based assistance. 

 

The effective price per unit of fuel, after policy 

intervention, is then computed as: 

𝑃eff = max(0.1, 𝑃 − 𝛿policy ) (1) 

where 𝑃 is the fixed base fuel price (set to 0.5 in 

the simulation) and 𝛿policy  is the subsidy amount 

determined by the active policy. A lower bound of 

0.1 prevents unrealistically low prices and maintains 

economic plausibility. 

The consumer's reward 𝑅𝐶 reflects net utility, 

formulated as the product of income and demand 

minus the total fuel expenditure: 

𝑅𝐶 =  income ×  demand −  demand × 𝑃eff (2) 

This structure incentivizes higher utility through 

fuel access while penalizing excessive expenditure. 

In contrast, the government's reward 𝑅𝐺 is designed 

to incorporate both the consumer's utility (reflecting 

welfare) and the fiscal cost of the subsidy: 

𝑅𝐺 = 𝑅𝐶 − ( demand × 𝛿policy ) (3) 
This dual-objective function captures the trade-

off faced by policymakers: maximizing consumer 

welfare while minimizing subsidy spending. 

Through repeated interaction between the consumer 

and the policy environment, this setup enables the 

evaluation of subsidy efficiency and behavioral 

adaptation over time. 

Overall, the environment is tailored to study 

adaptive economic behavior under constrained 

resources, and to explore how intelligent agents can 

learn or evolve policies that optimize long-term 

welfare in socioeconomically diverse contexts. 

2.2. Consumer Agent: Deep Q-Network 

The consumer agent in this simulation framework 

is modeled using a Deep Q-Network (DQN), a value-

based reinforcement learning algorithm that 

approximates the optimal action-value function 

𝑄(𝑠, 𝑎). This function estimates the expected 

cumulative reward for taking action 𝑎 in state 𝑠 and 

thereafter following the optimal policy. 

The learning process is governed by the Bellman 

optimality equation, which provides a recursive 

formulation for updating the Q -values: 

𝑄(𝑠𝑡 , 𝑎𝑡) = 𝔼 [𝑟𝑡 + 𝛾max
𝑎′

 𝑄(𝑠𝑡+1, 𝑎
′)] (4) 

Here, 𝑟𝑡 denotes the immediate reward received 

at time 𝑡, 𝛾 ∈ [0,1) is the discount factor reflecting 

the relative importance of future rewards, and 

max
𝑎′

 𝑄(𝑠𝑡+1, 𝑎
′) represents the maximum expected 

reward achievable from the next state 𝑠𝑡+1. 

The Q-function is approximated using a deep 

neural network with multiple hidden layers, capable 

of capturing complex, non-linear relationships 

between the input state space and the resulting Q-

values. The state vector 𝑠𝑡 comprises normalized 

economic indicators including consumer income, 

previous fuel demand, and market fuel price. The 

discrete action space represents the consumer's 

choice of fuel quantity, scaled to reflect a maximum 

quota. 

Training of the DQN is implemented using the 

stable-baselines3 library and spans 10,000 timesteps. 

The algorithm employs experience replay, a 

technique wherein past transitions ( 𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1 ) 

are stored in a memory buffer and randomly sampled 

in batches for network training. This reduces the 

temporal correlations in the training data and 

improves sample efficiency. 

To balance exploration and exploitation, the 

agent follows an 𝜀-greedy policy. With probability 𝜀, 

the agent selects a random action to explore new 

behaviors, while with probability 1 − 𝜀, it chooses 

the action that maximizes the current Q-value 

estimate. This mechanism ensures that the agent 

continues to explore suboptimal policies and avoids 

getting trapped in local optima during early training 

phases. 

The combination of function approximation, 

temporal-difference learning, and randomized 

exploration equips the consumer agent with the 
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capability to learn optimal consumption behaviors 

under varying policy regimes and economic 

scenarios. Over the course of training, the agent 

converges toward a strategy that maximizes 

individual utility in response to dynamically 

changing fuel subsidy policies. 

2.3. Government Agent: Upper Confidence 

Bound Bandit 

The government agent is tasked with selecting an 

optimal fuel subsidy policy from a discrete set of 

three options: universal, quota-based, and targeted. 

To manage this decision-making process in a data-

driven and adaptive manner, the agent utilizes a 

multi-armed bandit (MAB) framework-specifically, 

the Upper Confidence Bound (UCB) algorithm. 

The UCB algorithm is designed to balance the 

trade-off between exploration (trying less-known 

policies to gather information) and exploitation 

(choosing policies that have performed well 

historically). For each policy arm𝑖, the agent 

maintains a cumulative reward estimate �̂�𝑖 and a 

selection count 𝑛𝑖. The UCB value at time step 𝑡 for 

each arm is computed as follows: 

UCB𝑖(𝑡) = �̂�𝑖 +√
2log⁡ 𝑡

𝑛𝑖
(5) 

Here, the first term represents the empirical mean 

reward, while the second term is an exploration 

bonus that diminishes as 𝑛𝑖 increases, encouraging 

the agent to try policies with lower selection 

frequencies. 

After each episode, the reward received by the 

government agent, denoted 𝑅𝐺, is used to update the 

estimate �̂�𝑖 of the selected policy 𝑖 via incremental 

averaging: 

�̂�𝑖 ← �̂�𝑖 +
1

𝑛𝑖
(𝑅𝐺 − �̂�𝑖) (6) 

This allows the agent to refine its estimate based 

on new observations while maintaining 

computational efficiency and numerical stability. To 

ensure sufficient initial exploration of all policy 

options, an 𝜀-greedy mechanism is incorporated with 

𝜀 = 0.1. This means that 10% of the time, the agent 

will select a policy at random, regardless of its UCB 

score, thereby reducing the risk of premature 

convergence to suboptimal policies. 

This hybrid exploration strategy - combining the 

statistical rigor of UCB with random sampling via 𝜀 

-greedy-enhances the agent's ability to discover the 

most fiscally efficient and socially beneficial policy 

over time. The design reflects real-world policy 

experimentation where a balance is often sought 

between established programs and innovative 

interventions. 

 

2.4. Simulation Protocol 

To evaluate the adaptive dynamics between 

subsidy strategies and consumption behavior, the 

simulation was executed over 1,000 discrete 

episodes. In each episode, a sequence of interactions 

unfolds between three key components: the 

simulation environment, a consumer agent governed 

by a Deep Q-Network (DQN), and a government 

agent implementing a multi-armed bandit policy 

selection strategy. 

At the beginning of each episode, the 

environment is initialized with a randomly sampled 

consumer income and demand history, thereby 

ensuring heterogeneity in agent experiences. The 

government agent selects one of three available 

subsidy policies-universal, quota-based, or targeted-

using the Upper Confidence Bound (UCB) 

algorithm, which weighs both the historical 

effectiveness of each policy and the uncertainty 

associated with underexplored options. This selection 

reflects a balance between exploiting high-

performing policies and exploring less-tested 

strategies to improve long-term performance. 

The chosen policy is then passed to the consumer 

agent, which observes the current economic state 

vector and selects a fuel consumption level using its 

trained Q-network. The environment calculates both 

consumer utility and government fiscal impact based 

on the interaction between the selected policy and the 

agent's demand response. Specifically, the simulation 

captures both the direct utility gained by the 

consumer and the cost burden imposed on the state 

due to the subsidy expenditure. 

Reward values for both agents are computed and 

logged at each step, with a focus on tracking the 

evolution of policy efficiency over time. To mitigate 

noise in the reward trajectory and enhance 

interpretability, a rolling average with a window size 

of 50 episodes is applied. This smoothing technique 

allows for the visualization of performance trends, 

particularly in assessing convergence behavior and 

the stability of policy preferences. 

Overall, the simulation protocol is designed not 

only to assess the static performance of individual 

policies but also to observe how adaptive learning 

algorithms respond under dynamic and uncertain 

conditions. The emergent behavior from these agent-

policy interactions provides insights into the 

robustness and practical viability of AIassisted 

economic policy design. 

2.5. Code Implementation 



 

195 Adaptive Fuel Subsidy Optimization … (Pandu Dwi Luhur Pambudi) 

 

To operationalize the described model, the 

simulation was implemented using Python with 

support from key libraries such as gymnasium, 

numpy, pandas, matplotlib, and stable-baselines3. 

The core logic was structured around a custom 

reinforcement learning environment compliant with 

the OpenAI Gym interface, allowing seamless 

integration with RL algorithms. 

The consumer agent was modeled using the DQN 

algorithm provided by stable-baselines3, and trained 

over 10,000 timesteps. The government agent was 

implemented as a multi-armed bandit using the 

Upper Confidence Bound (UCB) strategy, supported 

by a greedy mechanism to encourage initial 

exploration. 

The following Python code snippet summarizes 

the key elements of the implementation: 
 

--- ENVIRONMENT --- 

class FuelConsumptionEnv(gym.Env): 
def init(self): 
... # Environment variables and 
limits 
def reset(self): 
... # State initialization 
def step(self, action, policy=None): 
... # Reward calculation and state 
update 
 

--- DQN AGENT (Consumer) --- 

env = make_vec_env(lambda: 
FuelConsumptionEnv(), n_envs=1) 
model = DQN("MlpPolicy", env, 
verbose=0) 
model.learn(total_timesteps=10000) 
 

--- BANDIT AGENT (Government) --- 
class GovernmentBanditAgent: 
def init(self): 
... # UCB setup and reward tracking 
def select_arm(self, epsilon=0.1): 

... # UCB logic with epsilon-greedy 
exploration 
def update(self, arm, reward): 
... # Reward update rule 
--- SIMULATION LOOP --- 
for t in range(1000): 
... # Agent interaction, reward 
logging, plotting 
 

2.6. Simulation Workflow Overview 

Figure 1 presents the process flow diagram 

outlining the simulation logic behind the adaptive 

fuel subsidy framework. This schematic illustrates 

the sequence of operations performed during each 

episode of the 1,000 -step simulation, highlighting 

the interplay between the consumer agent, the 

government agent, and the environment. 

The workflow begins at the Start node, followed 

by the Initialization of the Environment, where a new 

instance of the simulation is created. This includes 

random sampling of consumer-specific variables 

such as income and initial demand, ensuring 

variability across episodes and simulating a dynamic 

economic environment. 

Next, in the Initialize Agents phase, two 

intelligent agents are activated: 

• A government agent employing an Upper 

Confidence Bound (UCB) algorithm enhanced 

with an 𝜀-greedy exploration strategy for 

adaptive policy selection. 

• A consumer agent modeled using Deep Q-

Learning (DQN), trained to optimize fuel 

consumption decisions under varying economic 

states and subsidy schemes. 

 

The process then bifurcates into two parallel 

computations: 

• The government selects one of three available 

subsidy policies: universal, quota-based, or 

targeted. 

• Simultaneously, the DQN-based consumer 

predicts the optimal fuel consumption action 

based on its learned Q-value function and current 

environmental state. 

 

Both outputs converge in the Step Environment 

node, where the simulation environment computes 

the immediate consequences of the consumer's action 

under the selected policy. The new state is generated, 

and reward signals for both agents are calculated. 

Subsequently, in the Compute Rewards phase, 

two distinct reward functions are evaluated: 

• Consumer reward represents net utility, 

calculated as the difference between 

consumption value and cost. 

• Government reward incorporates fiscal 

expenditure on subsidies, reflecting the trade-off 

between policy generosity and budgetary 

efficiency. 

 

Following the reward evaluation: 

• The government agent updates its UCB estimates 

based on received feedback, refining its internal 

value representation of each policy. 
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• Simultaneously, reward and policy logs are 

maintained for analysis, allowing performance 

tracking over time. 
 

The Plot Results stage visualizes two outputs: 

smoothed consumer and government reward 

trajectories, and the frequency distribution of policy 

selections. These outputs offer valuable insights into 

policy performance and behavioral adaptation. 

Finally, the process concludes at the End node, 

completing a single iteration. This structure is 

repeated for 1,000 episodes to assess long-run 

convergence, learning dynamics, and policy 

implications. This modular simulation structure 

facilitates extensibility for more complex scenarios, 

including multi-agent setups, contextual bandit 

formulations, or the integration of broader economic 

indicators. 

 

 

 
Figure 1. Simulation flowchart for adaptive fuel subsidy 

evaluation using Deep Q-Learning and UCB bandit 

agents. 

 

2.7. Parameter Configuration Overview 

To ensure reproducibility and clarity, Table 1 

summarizes the key parameters used in the 

simulation, including environment setup, agent 

configurations, and algorithmic hyperparameters.  

This parameter summary serves as a reference 

point for interpreting the simulation results and 

supports reproducibility for future studies extending 

this framework. 

 

Table 1. Simulation and Agent Parameters 

Category Parameter Description 

Environment Max quota 50 units - maximum 

possible fuel 

demand 

Price floor 0.1 - prevents 

unrealistically low 

fuel prices 

Base fuel 

price 

0.5 - fixed market 

price before subsidy 

State vector [income, previous 

demand, price] 

Consumer 

Agent (DQN) 

Algorithm Deep Q-Network 

(DQN) 

Library stable-baselines3 

Total 

timesteps 

10,000 - training 

length 

Exploration strategy 𝜀-greedy, 𝜀 =
0.1 

Experience 

replay 

Enabled - improves 

sample efficiency 

Government 

Agent (Bandit) 

𝜺 

Policy 

options 

[universal, quota, 

targeted] 

Exploration 

strategy 

UCB with 𝜀-greedy 

 0.1 - random 

exploration 

probability 

UCB 

formula 

 

Reward 

update 

Incremental 

average update of 

�̂�𝑖 

Simulation 

Protocol 

Iterations 1,000 episodes 

Smoothing 

window 

50 - for reward 

visualization 
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III. RESULTS AND DISCUSSION 

The results show that Figure 2 presents 

smoothed consumer and government rewards over 

1,000 simulation steps. Consumer rewards remained 

consistently positive, indicating effective adaptation 

to varying policy environments. In contrast, 

government rewards fluctuated and were often 

negative, reflecting the high fiscal cost associated 

with certain.  

 

 
Figure 2. Smoothed Reward over Time (window=50) 

 

 
Figure 3. Government Policy Selection (1000 Steps) 

subsidy strategies 

 
Figure 3 illustrates the frequency of policy selection 

by the government agent. Universal subsidies were 

selected in over 80% of episodes, highlighting their 

strong consumer performance but weak government 

efficiency.  

This underscores the classic tension between 

popular and sustainable policy choices. The limited 

exploration of quota and targeted subsidies may have 

led to an underestimation of their long-term 

potential, pointing to a key weakness in the current 

bandit strategy. This aligns with findings from 

(Thibodeau et al., 2024), who emphasize the 

importance of balancing exploration and 

exploitation in policy selection to avoid suboptimal 

long-term outcomes. 

In the evaluation matrix, the simulation results 

show an average consumer reward of 9.28, 

indicating that the consumers generally benefited 

from the subsidy policies, especially from the 

universal and targeted subsidies. This positive 

reward reflects the consumer's satisfaction, as the 

reward is directly linked to their utility, which 

depends on factors like income and fuel demand. 

However, the government’s average reward is 

negative at -0.44, suggesting that the subsidies, 

particularly the universal subsidy, result in 

significant fiscal costs, making the policies less 

sustainable from a financial perspective. 

The policy selection frequency highlights the 

preferences of the government agent, with the 

targeted subsidy being chosen most often (720 

times), followed by the universal subsidy (196 

times), and the quota-based subsidy (84 times). This 

preference suggests that the government favors 

policies that provide support to low-income 

consumers while minimizing fiscal burden. The 

universal subsidy, despite its popularity with 

consumers, is selected less frequently due to its 

higher cost to the government, which may not be 

sustainable in the long term. 

The ANOVA test further supports the validity of 

these observations, with a statistically significant 

difference (F-statistic: 13.06, p-value: 0.0000) 

between the rewards of the three policies. This result 

confirms that the rewards from the three subsidy 

policies are not equal, emphasizing the varying 

effectiveness and fiscal impact of each policy. The 

significant p-value indicates that the differences in 

consumer rewards across the policies are not due to 

random chance, reinforcing the importance of 

choosing the right subsidy strategy based on the 

desired outcomes for both consumers and the 

government. 

Therefore, this paper provides four managerial 

insights. (1) Balancing Popularity and Fiscal 

Sustainability. The simulation demonstrates the 

allure of universal subsidies due to their broad 

appeal and stable consumer outcomes. However, this 

strategy places a substantial burden on government 

budgets. This trade-off mirrors real-world dilemmas, 

such as in Malaysia, where the government is 

preparing to reduce fuel subsidies in mid-2025 to 

address fiscal constraints Bloomberg (2024). (2) 

Importance of Adaptive Policy Mechanisms. The 

dynamic interactions modeled in the simulation 

highlight the need for responsive, data-driven policy 

tools. Adaptive policies that adjust based on real-

time feedback can prevent wasteful spending. 

Indonesia's ongoing evaluation of its fuel subsidy 

scheme, aiming for a potential phase-out by 2027, 

illustrates a national commitment to reform (Reuters, 

2024). (3) Targeted Subsidies as a Viable 

Alternative. Despite being underutilized in the 

simulation, quota and targeted strategies hold 

promise for efficiency and equity. India's recent 

decision to increase targeted subsidies (e.g., cooking 

gas, fertilizer) by 8% in its 2025 budget suggests a 

growing preference for more focused interventions 

(Reuters, 2025). (4) Leveraging Technology for 

Policy Optimization. The successful integration of 

reinforcement learning and multi-armed bandit 

algorithms in this study supports the growing role of 

AI in policy design, as highlighted in prior research 

(Mui et al., 2021; Oda et al., 2022; Xu et al., 2020). 
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These methods enable simulations to reveal effective 

long-term strategies, offering a scientific basis for 

navigating complex fiscal decisions (Thibodeau et 

al., 2024). 

In conclusion, this analysis reveals that while 

universal subsidies may be politically expedient, 

they are not always economically optimal. Future 

subsidy reforms should incorporate adaptive 

mechanisms, prioritize targeted support, and 

consider leveraging AI to navigate the tension 

between equity and fiscal responsibility. 

IV. CONCLUSION  

This study provides a novel contribution to the 

intersection of artificial intelligence and public 

economic policy by demonstrating the potential of 

combining deep reinforcement learning (DRL) and 

bandit algorithms to inform adaptive fuel subsidy 

strategies. By simulating an interactive environment 

between a consumer agent-trained through Deep Q-

Learning - and a government agent-guided by a 

multi-armed bandit decision model-we explore how 

varying subsidy policies can evolve dynamically 

based on feedback from consumption behavior and 

policy performance. 

The results indicate that the consumer agent is 

capable of learning optimal consumption behaviors 

under a range of economic conditions, validating the 

applicability of reinforcement learning in modeling 

realistic and adaptive decision-making. Moreover, 

the government agent consistently favored the 

universal subsidy policy due to its relatively higher 

short-term reward from the consumer's perspective. 

However, this preference came at a fiscal cost, 

resulting in suboptimal outcomes for government 

welfare. This divergence between the objectives of 

consumer satisfaction and governmental efficiency 

reflects a common policy dilemma, emphasizing the 

need for models that can better balance equity and 

sustainability. 

The broader implications of this work lie in its 

support for the integration of AI into policy 

simulation and economic modeling. The use of 

reinforcement learning and bandit strategies offers a 

powerful framework for designing public policies 

that are responsive to changing conditions and 

capable of optimizing complex tradeoffs. However, 

this approach also highlights the challenge of 

aligning technological optimization with normative 

public values, such as fairness and long-term social 

equity. 

Despite its contributions, the study is not without 

limitations. The simulation environment is 

intentionally simplified to allow for computational 

feasibility and clarity of interpretation, which 

necessarily limits the scope of realism. The single-

agent setup does not capture heterogeneity among 

consumers, such as differences in 

income, geography, or behavioral tendencies, which 

are critical in real-world policy design. Furthermore, 

the government agent lacks contextual awareness, 

relying solely on aggregated reward signals without 

considering macroeconomic trends or social 

priorities. The reward structures themselves are also 

linear and may not fully reflect the multi-dimensional 

objectives of public policy. 

Looking ahead, future research should expand the 

framework to include multi-agent architectures that 

can simulate a diverse population of consumers with 

varying economic and behavioral profiles. 

Introducing contextual bandit models would also 

allow the government agent to tailor subsidy 

strategies to specific demographic or economic 

segments. Additionally, the integration of broader 

evaluation metrics - such as income inequality, 

carbon emissions, or long-term budgetary impacts-

would enhance the model's utility for real-world 

policymaking. These extensions would move the 

framework closer to the complexity of actual subsidy 

systems and increase its relevance for policy 

experimentation and reform in diverse national 

contexts. 
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