

JURNAL EMACS
(Engineering, MAthematics and Computer Science) Vol.7 No.2 May 2025: 167-173

 167

e-ISSN: 2686-2573

DOI:

10.21512/emacsjournal.v6

i3.11968

DOI: 10.21512/emacsjournal.v7i2.13003

DOI: 10.21512/emacsjournal.v6i3.11968

Copyright © 2025

‘DREAMS D’: New Matrix Evaluation for

Software Architecture

Zulfany Erlisa Rasjid1*, Ivana Yoshe Aldora2, Welly Piyono3,

Risma Yulistiani4, Hady Pranoto5

,

1-5 Computer Science Program, Computer Science Department, School of Computer Science,

Bina Nusantara University,

Jakarta, Indonesia 11480

zulfany@binus.ac.id, ivana.aldora@binus.ac.id, welly.piyono@binus.ac.id,

risma.yulistiani@binus.ac.id, hadypranoto@binus.ac.id

*Correspondence: zulfany@binus.ac.id

Abstract – The microservices software architecture is

highly popular and commonly used in developing large-

scale systems. Does this mean that microservices are

superior, or could older architectures like monolithic be

more adaptable to modern developments? The selection of

software architecture is crucial to support overall system

performance, quality, and user experience. Effective

evaluation also plays a significant role in assessing system

performance. In this paper, an evaluation matrix model is

proposed, called 'DREAMS D,' comprising of seven vital

components to test the quality of systems built using

specific architectures. The focus is on microservices and

monolithic architecture as our sample Software

Architectures. The evaluation is conducted through a

systematic review, and each architecture is scored based

on factors such as Development, Response time, Error

handling, Availability, Maintenance, Scalability, and

Deployment. The result shows that microservices

architecture scores higher in most evaluation criteria,

suggesting better suitability for complex and adaptive

systems. However, monolithic architecture may still be

appropriate for simpler systems due to its lower cost and

straightforward integration. This study provides a

structured and measurable framework for assisting

developers and organizations in making strategic

decisions when choosing or transitioning between

software architectures. The DREAMS D matrix can be

used as a reference model for future evaluations or as a

foundation for extending the framework to other

architectural paradigms such as serverless or event-

driven systems.

Keywords: Microservices; Monolithic; Software

Architecture; Deployment; Evaluation

I. INTRODUCTION

Software Architecture (SA) plays a fundamental

role in the development of systems (Lim et al., 2021).

SA can be defined as the relationship among

components, functionalities, and design principles

within a software system (Sahlabadi et al., 2022),

(Yang et al., 2021), (Venters et al., 2018),

(Hasselbring, 2018). The appropriate selection of

software architecture can enhance system credibility

(Yang et al., 2002), thereby influencing user

experience (Bao et al., 2011) and creating software

that is high-quality, robust, and adaptable. One

method to assess software quality is through

evaluation (Yan et al., 2020). Due to that reasons, an

evaluation matrix is proposed to measure the quality

of software architecture using several key factors:

development cost, development effort, response time,

error fault, availability, maintenance, scalability, and

deployment, in short the ‘DREAMS D’ matrix.

The methodology employed is a systematic

review, presented as a comparison table of evaluation

factors between monolithic and microservice

architectures, both of which are prevalent in software

development across various industry scales.

The objective of this paper is to assist developers

in selecting an appropriate SA during the software

design process before entering the deployment stage

or determine the importance of switching to a

different system architecture (SA) in the

development of an existing application.

1.1 Literature Review

Evaluation in the context of software involves

systematic assessment of the quality, performance,

reliability, and suitability of software according to

predetermined requirements and objectives

(Sommerville & Sawyer, 2014). Evaluation is crucial

to ensure that the developed software meets

minimum expected standards such as performance,

reliability, security, and functionality. Additionally,

168 JURNAL EMACS (Engineering, MAthematics and Computer Science) Vol.7 No.2 May 2025: 167-173

evaluation is valuable for optimizing software

performance by identifying weaknesses that need

improvement, thereby making issue identification

more efficient before user deployment (Pfleeger &

Atlee, 2015). The evaluation matrix we propose

includes several factors:

• Development is an effort to improve, enhance,

and adapt the product to follow current trends,

preferences, and social conditions (Zhang et al.,

2021).

• Response time is a critical component in system

performance evaluation as it relates to how

quickly the system can respond to user actions to

produce appropriate outputs (Amurrio et al.,

2020).

• The concept of software fault proneness is

unclear and can be evaluated through multiple

methods. Errors can arise at any phase of the

SDLC, and some may escape detection during

testing, only to become apparent during actual

use in the field (Phung et al., 2023).

• Availability refers to the system's ability to

sustain operation or accessibility despite

component failures or cyber-attacks (Tlili &

Chelbi, 2022).

• Maintenance can be defined as the system's

ability to be modified, upgraded, and repaired, or

its adaptability (Zhou et al., 2020).

• Scalability is the system's ability to handle

increased workloads without compromising

overall system performance (Chechina et al.,

2017).

• Deployment is a series of procedures to activate

all software services so they can be accessed by

users (Aksakalli et al., 2021).

These seven factors are considered sufficient to

support the development of robust, efficient software

systems that can adapt to future needs. In these case

the evaluation conducted using two types of SA:

microservices and monolithic architectures.

1.2 Microservices and Monolithic Architecture

Microservices are a software development

model that breaks down each function/feature into

smaller, simpler components, making deployment

easier due to their independent nature (Lewis &

Fowler, 2014), (Posta, 2016), (Rajesh, 2016). This

architecture was first pioneered by Netflix in 2011

and gained popularity in subsequent years, being

adopted by companies such as Amazon, eBay,

Zalando, Spotify, Uber, Airbnb, LinkedIn, Twitter,

Groupon, and Coca-Cola. The architecture of

Microservice can be seen in figure 1.

The microservice architecture consists of two

services: 'city service' and 'route service', each with

separate databases and web API routes. When a user

accesses one or both services, the user request is

forwarded separately through the API gateway to the

appropriate service. Once the request has been

processed, the web API of each service sends the

response back to the API gateway, which then

forwards it to the user as output.

Monolithic architecture combines all modules,

features, functions, databases, and servers into a

single application unit (Dragoni et al., 2017). This

architecture is still widely used today because of its

centralized control over interconnected

components.The architecture of Monolithic can be

see in figure 2.

 Figure 1. Microservices Logical Architecture

Figure 2. Monolithic Logical Architecture

The monolithic architecture consists of two

services, 'city service' and 'route service',

combined into a single component with a shared

database and a single web API. When a user

makes a request, it is forwarded through the city

and route web API and directly sent to the

service for processing. Once the request is

processed, the response is sent back to the user

through the city and route web API as output.

In summary, evaluating SA with DREAMS

D matrix evaluation is crucial for developing

software systems that meet high standards of

performance, reliability, and adaptability.

II. METHODS

The method used in these paper is a

systematic review through collecting data from

several journals related to the evaluation of

monolithic and microservice architecture

software, comparing factors such as ease of

169 'DREAMS D': New Matrix Evaluation for Software… (Zulfany Erlisa Rasjid, et.al)

maintenance, availability, response time,

development, deployment, error/fault, and

scalability.

In the maintenance section, our focus is on

evaluating the ease with which developers can

modify the software post-release. For

availability section, this paper assess the

likelihood of the system, whether built with

microservice or monolithic architecture,

experiencing server downtime, errors, and other

failures. The response time section examines

the system's speed in responding to user actions

when accessing software features. In the

scalability section, this paper wants to evaluate

the effort required by developers to enhance or

add new features in the future.

In the deployment section, the paper aims to

evaluate the ease of the deployment process for

both architectures and its impact on the overall

system. The development section assesses the

effort required by developers during system

development, including the software testing

process. Finally, the error/fault section

examines the overall impact of errors on the

system and the effectiveness of the system's

recovery process.

Next, in the process of collecting journals,

authors separated each journal by keywords

following the pattern "factor" + "software

architecture," for example, "maintenance in

microservice." If no journals were found using

these keywords, authors modified the keywords

to "factor" + "analysis" or "factor" + "in

software," such as "availability analysis."

Another approach that this paper took was to

gather several systematic review journals

related to microservice and monolithic

architectures and then search for additional

factors not covered in these journals by

consulting other general journals.

III. RESULTS AND DISCUSSION

DREAMS D MATRIX selects several critical

components to test and analyze the quality of

software developed with specific architectures.

Shown in Table 1.

Table 1. Components to test and analyze

Scaling

Factors

Monolithic Microservice

Development Monolithic

architectures are

From the paper, it

can be concluded

typically

developed as a

unified whole

simultaneously, so

each module is

integrated into one

with complexity

ranging from low

to high. Therefore,

in development,

there are specific

requirements such

as compatible

operating systems,

versions, and

others, making it

less flexible

compared to

microservices.

However, in terms

of cost, monolithic

architectures are

cheaper because

the development

process is

conducted only

once on a large

scale for the entire

system

(Mendonça et al.,

2021), (Bajaj et

al., 2021).

that microservices

have an advantage

in development

when dealing with

higher complexity

and more

components

because each

module in the

system is

independent and

can adapt to

containerization,

thereby facilitating

deployment across

different operating

systems. On the

other hand, this

increases the

development costs

for each separate

component/module

of the system

(Malhotra et al.,

2024).

Response

Time

From the

experimental

results, it can be

concluded that

when the number

of virtual

machines (VMs)

used is still 1, the

performance of

monolithic

architecture is

better than that of

microservices.

This is evidenced

by the throughput

(handling request)

reaching 24% with

Java, while

microservices

with a single VM

(MSx1) only reach

9%. The

monolithic

From the

experimental

results, it can be

concluded that as

the number of

virtual machines

(VMs) increases,

the performance of

microservices is

better than that of

monolithic

architectures. This

is evidenced by the

vertical scaling

efficiency of

microservices

reaching 200%,

compared to only

50% for monolithic

architectures.

Furthermore, in

terms of distributed

computing based

170 JURNAL EMACS (Engineering, MAthematics and Computer Science) Vol.7 No.2 May 2025: 167-173

architecture is

capable of

handling 2 times

and 1.37 times

more requests in

.NET and Java,

respectively,

compared to

microservices.

The CPU usage

and Java/.NET

configuration do

not significantly

affect throughput,

which is around

3.5% (Blinowski

et al., 2022).

on throughput,

microservices are

more dominant

compared to

monolithic

architectures, even

though both are

already Pareto

efficient

(Blinowski et al.,

2022).

Error/Fault Monolithic

architectures have

more complex

error handling

involving testing

and integration of

the entire system

when there are

changes to the

code or system

development

because all

modules are

interconnected as

a single unit. This

requires

coordination with

the entire

development team

(Mendonça et al.,

2021), (Bajaj et

al., 2021), (Cerny

et al., 2020).

Microservices have

better error

handling compared

to monolithic

architectures

because of their

independent

nature. This allows

fixes and updates to

be applied

separately to

specific modules

without affecting

unrelated

components.

Similarly, re-

testing of new code

can be done

independently from

unrelated parts of

the system

(Mendonça et al.,

2021), (Bajaj et al.,

2021), (Cerny et

al., 2020).

Availability Monolithic

architectures have

lower availability

compared to

microservices

because the

components in

monolithic

architectures are

integrated into a

single unit.

Therefore, when

an error occurs, it

From the paper, it

can be concluded

that the availability

of microservices is

higher compared to

monolithic

architectures

because each

component is

separate.

Therefore, when an

error occurs in one

part of the system,

affects all related

modules/compone

nts.

the overall system

can continue to

operate without

disruption (Auer et

al., 2021).

Main-tenance According to

Auer, F et al.

(Auer et al., 2021)

maintenance in

monolithic

architectures is

more complex

compared to

microservices

because the

development team

needs to consider

the overall system

architecture and

the interaction

between

components/modu

les. Therefore,

when developing

and modifying the

system, testing

needs to be

conducted

comprehensively

across all related

components.

Microservices have

easier maintenance

compared to

monolithic

architectures

because each

component is

separate. Thus,

when a bug or code

error occurs, it does

not affect other

components, and

the re-testing

process for updates

or code fixes is

only conducted on

the relevant system

components due to

their loose

coupling nature

(Auer et al., 2021).

Scalability From the

experimental

results, it can be

concluded that

scaling up a

monolithic

architecture is

better than

microservices in a

single VM

condition with low

complexity and a

smaller number of

users because its

distributed

computing is

lower than that of

microservices.

This means that

when user requests

are too many, the

performance and

efficiency of the

monolithic

From the

experimental

results, it can be

concluded that

scaling up

microservices is

superior with

vertical and

horizontal scaling

achieving a total

increase of 30%

compared to

monolithic

architecture, with

Pareto efficiency

higher than

monolithic in cost-

route service to

check load

distribution. This

demonstrates good

distributed

computing from

the microservices

171 'DREAMS D': New Matrix Evaluation for Software… (Zulfany Erlisa Rasjid, et.al)

architecture will

decrease

(Blinowski et al.,

2022).

architecture when

handling large

numbers of

requests. In this

case, the testing

was conducted

using Java and

C#.NET with the

help of the Azure

Cloud platform

(Blinowski et al.,

2022).

Deployment The paper

concludes that

monolithic

architecture

utilizes the

concept of

simultaneous

deployment. Each

component in the

monolith is tested

first before

deployment, so if

the system

encounters issues

or changes in the

code, the entire

system undergoes

retesting, and the

latest fixes are

queued for

deployment. This

process heavily

depends on team

coordination

within the system

because it is

vulnerable to

failures in CI/CD

during

redeployment

(Malhotra et al.,

2024).

The paper

concludes that

independent

deployment can

enhance the

resource efficiency

of microservices by

implementing the

principles of

continuous

integration/continu

ous development

(CI/CD). This is

because each

component is

deployed

separately and can

be fixed at any

time. However, in

some conditions, it

can be problematic

because

independent

deployment takes

more time and

occurs gradually,

making

documentation

more difficult

(Aksakalli et al.,

2021).

Development effort is tested to gauge the

resources required in the overall system

development process, including total costs incurred

by the development team, system compatibility

levels, and versioning. For example, monolithic

architectures are developed as a unified whole,

resulting in lower costs compared to microservices.

However, in terms of compatibility, microservices

excel due to their containerization capabilities and

flexibility.

Response time is tested to measure the system's

resilience and speed in handling user requests,

typically through throughput indicators. For

example, in a single VM scenario, monolithic

architectures excel in handling user requests

initially. However, as system complexity increases,

microservices, with their distributed computing

capability through load balancing, become more

effective in handling user requests.

Error handling is tested to assess how systems

developed with specific architectural models

manage errors and faults. For example,

microservices demonstrate superior error handling in

bug contexts because each module within its

components is separate, allowing independent fixes

and re-testing of code.

Availability is tested to measure the total

operational time of the system and the impact of

failures on the overall system. For example, in

microservices, if a failure occurs, the entire system

remains unaffected because each component is

separate. In contrast, in monolithic architectures, a

failure in one component affects the entire system

due to their interconnected nature.

Maintenance is tested to assess the system's

capability to evolve through modifications and fixes.

For example, microservices architecture excels in

large-scale or complex systems and allows

independent system development compared to

monolithic architectures, which are integrated into a

single system.

Scalability is tested to assess the system's ability

to scale horizontally and vertically. For example,

vertical scaling efficiency in microservices can reach

200%, whereas monolithic architectures typically

achieve only 50% efficiency when the number of

VMs increases or system complexity rises.

Horizontal scaling involves adding server instances

to manage user load, while vertical scaling entails

upgrading components such as CPU, memory, and

RAM within a single server.

Deployment is tested to understand how the

system is deployed, including its components and

their integration. For instance, microservices exhibit

independent deployment of components and

modules.

Based on the seven points, the author proposes

the following scores for the overall evaluation

components:

Table 2. Evaluation

Architecture D R E A M S D Total

Score

Monolithic 2 2 1 1 2 2 2 12

Microservice 2 3 3 3 3 3 2 19

172 JURNAL EMACS (Engineering, MAthematics and Computer Science) Vol.7 No.2 May 2025: 167-173

Scoring Criteria:

1. The scale used for evaluation ranges from 1-3,

where:

• 1 means poor,

• 2 means fair,

• 3 means good.

2. Sum the total score from all factors. Based on the

final score:

• A score of 1-7 indicates that the SA is not

suitable for system development.

• A score of 8-15 indicates that the SA is

fairly stable for system development.

• A score of >15 indicates that the SA is

suitable for system development.

As a note, the author's evaluation is based on a

scenario of a complex and highly adaptive system,

with a developer team having diverse programming

language backgrounds.

IV. CONCLUSION

The evaluation matrix model proposed in this

paper aims to simplify the process for development

teams in choosing a suitable software architecture

(SA) for system development. It serves as a

benchmark to determine whether an ongoing or

completed system project should be transitioned to a

different software architecture, considering seven

primary factors that define software quality.

However, further research is crucial to evaluate the

effectiveness of this matrix model with alternative

architectural models. This is particularly important

as scoring assessments in architectures with

uncertain conditions must align closely with desired

software requirements. Moreover, the study's focus

on monolithic and microservices architectures

underscores the need for broader investigation into

other software architecture.

REFERENCES

Aksakalli, I. K., Celik, T., Can, A. B., &

Tekinerdogan, B. (2021). Systematic approach

for generation of feasible deployment

alternatives for microservices. IEEE Access, 9,

29505–29529.

https://doi.org/10.1109/ACCESS.2021.305758

2

Amurrio, A., Azketa, E., Gutierrez, J. J., Aldea, M.,

& Harbour, M. G. (2020). Response-time

analysis of multipath flows in hierarchically-

scheduled time-partitioned distributed real-

time systems. IEEE Access, 8, 196700–

196711.

https://doi.org/10.1109/ACCESS.2020.303346

1

Auer, F., Lenarduzzi, V., Felderer, M., & Taibi, D.

(2021). From monolithic systems to

microservices: An assessment framework.

Information and Software Technology, 137,

106600.

https://doi.org/10.1016/j.infsof.2021.106600

Bajaj, D., Bharti, U., Goel, A., & Gupta, S. C.

(2021). A prescriptive model for migration to

microservices based on SDLC artifacts. Journal

of Web Engineering, 20(3), 817–852.

https://doi.org/10.13052/jwe1540-9589.20312

Bao, T., Liu, S., & Wang, X. (2011). Research on

trustworthiness evaluation method for domain

software based on actual evidence. Chinese

Journal of Electronics, 20(2), 195–199.

Blinowski, G., Ojdowska, A., & Przybyłek, A.

(2022). Monolithic vs. microservice

architecture: A performance and scalability

evaluation. IEEE Access, 10, 20357–20374.

https://doi.org/10.1109/ACCESS.2022.315280

3

Cerny, T., et al. (2020). On code analysis

opportunities and challenges for enterprise

systems and microservices. IEEE Access, 8,

159449–159470.

https://doi.org/10.1109/ACCESS.2020.301998

5

Chechina, N., et al. (2017). Evaluating scalable

distributed Erlang for scalability and reliability.

IEEE Transactions on Parallel and Distributed

Systems, 28(8), 2244–2257.

https://doi.org/10.1109/TPDS.2017.2654246

Dragoni, N., et al. (2017). Microservices: Yesterday,

today and tomorrow. In Present and Ulterior

Software Engineering (pp. 195–216). Springer.

https://doi.org/10.1007/978-3-319-67425-

4_12

Hasselbring, W. (2018). Software architecture: Past,

present, future. In The Essence of Software

Engineering (pp. 169–184). Cham,

Switzerland: Springer.

Lewis, J., & Fowler, M. (2014, March).

Microservices: A definition of this new

architectural term.

https://www.martinfowler.com/articles/micros

ervices.html

Lim, S., Henriksson, A., & Zdravkovic, J. (2021).

Data-driven requirements elicitation: A

systematic literature review. Social

Networking and Computational Science, 2(1),

1–35.

Malhotra, A., Elsayed, A., Torres, R., &

Venkatraman, S. (2024). Evaluate canary

deployment techniques using Kubernetes,

Istio, and Liquibase for cloud native enterprise

applications to achieve zero downtime for

continuous deployments. IEEE Access, 12,

87883–87899.

173 'DREAMS D': New Matrix Evaluation for Software… (Zulfany Erlisa Rasjid, et.al)

https://doi.org/10.1109/ACCESS.2024.341608

7

Mendonça, N. C., Box, C., Manolache, C., & Ryan,

L. (2021). The monolith strikes back: Why

Istio migrated from microservices to a

monolithic architecture. IEEE Software, 38(5),

17–22.

https://doi.org/10.1109/MS.2021.3080335

Pfleeger, S. L., & Atlee, J. M. (2015). Software

engineering: Theory and practice. Pearson

Phung, K., Ogunshile, E., & Aydin, M. (2023).

Error-Type—A novel set of software metrics

for software fault prediction. IEEE Access, 11,

30562–30574.

https://doi.org/10.1109/ACCESS.2023.326241

1

Posta, C. (2016). Microservices for Java developers:

A hands-on introduction to frameworks

containers. O’Reilly Media.

Rajesh, R. (2016). Spring microservices. Packt

Publishing.

Sahlabadi, M., Muniyandi, R. C., Shukur, Z., &

Qamar, F. (2022). Lightweight software

architecture evaluation for industry: A

comprehensive review. Sensors, 22(3), 1252.

Sommerville, I., & Sawyer, P. (2014). Requirements

engineering: A good practice guide. John

Wiley & Sons.

Tlili, L., & Chelbi, A. (2022). Availibility modeling

for dependent competing failure process of

deteriorating systems. In 2022 IEEE

Information Technologies & Smart Industrial

Systems (ITSIS) (pp. 1–6). IEEE.

https://doi.org/10.1109/ITSIS56166.2022.101

18425

Venters, C. C., Capilla, R., Betz, S., Penzenstadler,

B., Crick, T., Crouch, S., et al. (2018). Software

sustainability: Research and practice from a

software architecture viewpoint. Journal of

Systems and Software, 138, 174–188.

Yan, B., Yao, H.-P., Nakamura, M., Li, Z.-F., &

Wang, D. (2020). A case study for software

quality evaluation based on SCT model with

BP neural network. IEEE Access, 8, 56403–

56414.

https://doi.org/10.1109/ACCESS.2020.298187

2

Yang, F., Mei, H., Lu, J., & Jin, Z. (2002). Some

discussion on the development of software

technology. Acta Electronica Sinica, 30(12A),

1901–1906.

Yang, T., Jiang, Z., Shang, Y., & Norouzi, M.

(2021). Systematic review on next-generation

web-based software architecture clustering

models. Computer Communications, 167, 63–

74.

Zhang, X., Tan, Y., & Yang, Z. (2021). Analysis of

impact of requirement change on product

development progress based on system

dynamics. IEEE Access, 9, 445–457.

https://doi.org/10.1109/ACCESS.2020.304675

3

Zhou, H., Gao, S., Qi, F., Luo, X., & Qian, Q. (2020).

Selective maintenance policy for a series-

parallel system considering maintenance

priority of components. IEEE Access, 8,

23221–23231.

https://doi.org/10.1109/ACCESS.2020.296927

9

