

JURNAL EMACS
(Engineering, MAthematics and Computer Science) Vol.7 No.2 May 2025: 167-173

 167

e-ISSN: 2686-2573

DOI:

10.21512/emacsjournal.v6

i3.11968

DOI: 10.21512/emacsjournal.v7i2.13003

DOI: 10.21512/emacsjournal.v6i3.11968

Copyright © 2025

‘DREAMS D’: New Matrix Evaluation

for Software Architecture

Zulfany Erlisa Rasjid1*, Ivana Yoshe Aldora2, Welly Piyono3,

Risma Yulistiani4, Hady Pranoto5

,

1-5 Computer Science Program, Computer Science Department, School of Computer Science,

Bina Nusantara University,

Jakarta, Indonesia 11480

zulfany@binus.ac.id, ivana.aldora@binus.ac.id, welly.piyono@binus.ac.id,

risma.yulistiani@binus.ac.id, hadypranoto@binus.ac.id

*Correspondence: zulfany@binus.ac.id

Abstract – The microservices software architecture

is highly popular and commonly used in developing

large-scale systems. Does this mean that

microservices are superior, or could older

architectures like monolithic be more adaptable to

modern developments? The selection of software

architecture is crucial to support overall system

performance, quality, and user experience. Effective

evaluation also plays a significant role in assessing

system performance. In this paper, an evaluation

matrix model is proposed, called 'DREAMS D,'

comprising of seven vital components to test the

quality of systems built using specific architectures.

The focus is on microservices and monolithic

architecture as our sample Software Architectures.

The evaluation is conducted through a systematic

review, and each architecture is scored based on

factors such as Development, Response time, Error

handling, Availability, Maintenance, Scalability,

and Deployment. The result shows that

microservices architecture scores higher in most

evaluation criteria, suggesting better suitability for

complex and adaptive systems. However, monolithic

architecture may still be appropriate for simpler

systems due to its lower cost and straightforward

integration. This study provides a structured and

measurable framework for assisting developers and

organizations in making strategic decisions when

choosing or transitioning between software

architectures. The DREAMS D matrix can be used

as a reference model for future evaluations or as a

foundation for extending the framework to other

architectural paradigms such as serverless or event-

driven systems.

Keywords: Microservices; Monolithic; Software

Architecture; Deployment; Evaluation

I. INTRODUCTION

Software Architecture (SA) plays a fundamental

role in the development of systems (Lim et al., 2021).

SA can be defined as the relationship among

components, functionalities, and design principles

within a software system (Sahlabadi et al., 2022),

(Yang et al., 2021), (Venters et al., 2018),

(Hasselbring, 2018). The appropriate selection of

software architecture can enhance system credibility

(Yang et al., 2002), thereby influencing user

experience (Bao et al., 2011) and creating software

that is high-quality, robust, and adaptable. One

method to assess software quality is through

evaluation (Yan et al., 2020). Due to that reasons, an

evaluation matrix is proposed to measure the quality

of software architecture using several key factors:

development cost, development effort, response time,

error fault, availability, maintenance, scalability, and

deployment, in short the ‘DREAMS D’ matrix.

The methodology employed is a systematic

review, presented as a comparison table of evaluation

factors between monolithic and microservice

architectures, both of which are prevalent in software

development across various industry scales.

The objective of this paper is to assist developers

in selecting an appropriate SA during the software

design process before entering the deployment stage

or determine the importance of switching to a

different system architecture (SA) in the

development of an existing application.

1.1 Literature Review

Evaluation in the context of software involves

systematic assessment of the quality, performance,

reliability, and suitability of software according to

predetermined requirements and objectives

(Sommerville & Sawyer, 2014). Evaluation is crucial

to ensure that the developed software meets

minimum expected standards such as performance,

168 JURNAL EMACS (Engineering, MAthematics and Computer Science) Vol.7 No.2 May 2025: 167-173

reliability, security, and functionality. Additionally,

evaluation is valuable for optimizing software

performance by identifying weaknesses that need

improvement, thereby making issue identification

more efficient before user deployment (Pfleeger &

Atlee, 2015). The evaluation matrix we propose

includes several factors:

• Development is an effort to improve, enhance,

and adapt the product to follow current trends,

preferences, and social conditions (Zhang et al.,

2021).

• Response time is a critical component in system

performance evaluation as it relates to how

quickly the system can respond to user actions to

produce appropriate outputs (Amurrio et al.,

2020).

• The concept of software fault proneness is

unclear and can be evaluated through multiple

methods. Errors can arise at any phase of the

SDLC, and some may escape detection during

testing, only to become apparent during actual

use in the field (Phung et al., 2023).

• Availability refers to the system's ability to

sustain operation or accessibility despite

component failures or cyber-attacks (Tlili &

Chelbi, 2022).

• Maintenance can be defined as the system's

ability to be modified, upgraded, and repaired, or

its adaptability (Zhou et al., 2020).

• Scalability is the system's ability to handle

increased workloads without compromising

overall system performance (Chechina et al.,

2017).

• Deployment is a series of procedures to activate

all software services so they can be accessed by

users (Aksakalli et al., 2021).

These seven factors are considered sufficient to

support the development of robust, efficient software

systems that can adapt to future needs. In these case

the evaluation conducted using two types of SA:

microservices and monolithic architectures.

1.2 Microservices and Monolithic Architecture

Microservices are a software development

model that breaks down each function/feature into

smaller, simpler components, making deployment

easier due to their independent nature (Lewis &

Fowler, 2014), (Posta, 2016), (Rajesh, 2016). This

architecture was first pioneered by Netflix in 2011

and gained popularity in subsequent years, being

adopted by companies such as Amazon, eBay,

Zalando, Spotify, Uber, Airbnb, LinkedIn, Twitter,

Groupon, and Coca-Cola. The architecture of

Microservice can be seen in figure 1.

The microservice architecture consists of two

services: 'city service' and 'route service', each with

separate databases and web API routes. When a user

accesses one or both services, the user request is

forwarded separately through the API gateway to the

appropriate service. Once the request has been

processed, the web API of each service sends the

response back to the API gateway, which then

forwards it to the user as output.

Monolithic architecture combines all modules,

features, functions, databases, and servers into a

single application unit (Dragoni et al., 2017). This

architecture is still widely used today because of its

centralized control over interconnected

components.The architecture of Monolithic can be

see in figure 2.

 Figure 1. Microservices Logical Architecture

Figure 2. Monolithic Logical Architecture

The monolithic architecture consists of two

services, 'city service' and 'route service', combined

into a single component with a shared database and

a single web API. When a user makes a request, it is

forwarded through the city and route web API and

directly sent to the service for processing. Once the

request is processed, the response is sent back to the

user through the city and route web API as output.

In summary, evaluating SA with DREAMS D

matrix evaluation is crucial for developing software

systems that meet high standards of performance,

reliability, and adaptability.

II. METHODS

The method used in these paper is a systematic

review through collecting data from several journals

related to the evaluation of monolithic and

microservice architecture software, comparing

factors such as ease of maintenance, availability,

response time, development, deployment,

error/fault, and scalability.

169 'DREAMS D': New Matrix Evaluation for Software… (Zulfany Erlisa Rasjid, et.al)

In the maintenance section, our focus is on

evaluating the ease with which developers can

modify the software post-release. For availability

section, this paper assess the likelihood of the

system, whether built with microservice or

monolithic architecture, experiencing server

downtime, errors, and other failures. The response

time section examines the system's speed in

responding to user actions when accessing software

features. In the scalability section, this paper wants

to evaluate the effort required by developers to

enhance or add new features in the future.

In the deployment section, the paper aims to

evaluate the ease of the deployment process for both

architectures and its impact on the overall system.

The development section assesses the effort required

by developers during system development, including

the software testing process. Finally, the error/fault

section examines the overall impact of errors on the

system and the effectiveness of the system's recovery

process.

Next, in the process of collecting journals,

authors separated each journal by keywords

following the pattern "factor" + "software

architecture," for example, "maintenance in

microservice." If no journals were found using these

keywords, authors modified the keywords to "factor"

+ "analysis" or "factor" + "in software," such as

"availability analysis." Another approach that this

paper took was to gather several systematic review

journals related to microservice and monolithic

architectures and then search for additional factors

not covered in these journals by consulting other

general journals.

III. RESULTS AND DISCUSSION

DREAMS D MATRIX selects several critical

components to test and analyze the quality of

software developed with specific architectures.

Shown in Table 1.

Table 1. Components to test and analyze

Scaling

Factors
Monolithic Microservice

Development

Monolithic

architectures are

typically
developed as a

unified whole

simultaneously, so
each module is

integrated into one

with complexity
ranging from low

to high. Therefore,
in development,

there are specific

requirements such
as compatible

operating systems,

versions, and

From the paper, it

can be concluded

that microservices
have an advantage

in development

when dealing with
higher complexity

and more

components
because each

module in the
system is

independent and

can adapt to
containerization,

thereby facilitating

deployment across

others, making it
less flexible

compared to

microservices.
However, in terms

of cost, monolithic

architectures are
cheaper because

the development

process is
conducted only

once on a large
scale for the entire

system

(Mendonça et al.,
2021), (Bajaj et

al., 2021).

different operating
systems. On the

other hand, this

increases the
development costs

for each separate

component/module
of the system

(Malhotra et al.,

2024).

Response
Time

From the

experimental
results, it can be

concluded that

when the number
of virtual

machines (VMs)

used is still 1, the
performance of

monolithic

architecture is
better than that of

microservices.

This is evidenced
by the throughput

(handling request)

reaching 24% with
Java, while

microservices

with a single VM
(MSx1) only reach

9%. The
monolithic

architecture is

capable of
handling 2 times

and 1.37 times

more requests in
.NET and Java,

respectively,

compared to
microservices.

The CPU usage

and Java/.NET
configuration do

not significantly

affect throughput,

which is around

3.5% (Blinowski

et al., 2022).

From the

experimental
results, it can be

concluded that as

the number of
virtual machines

(VMs) increases,

the performance of
microservices is

better than that of

monolithic
architectures. This

is evidenced by the

vertical scaling
efficiency of

microservices

reaching 200%,
compared to only

50% for monolithic
architectures.

Furthermore, in

terms of distributed
computing based

on throughput,

microservices are
more dominant

compared to

monolithic
architectures, even

though both are

already Pareto
efficient

(Blinowski et al.,

2022).

Error/Fault

Monolithic
architectures have

more complex

error handling
involving testing

and integration of

the entire system
when there are

changes to the
code or system

development

because all
modules are

interconnected as

a single unit. This

Microservices have
better error

handling compared

to monolithic
architectures

because of their

independent
nature. This allows

fixes and updates to
be applied

separately to

specific modules
without affecting

unrelated

components.

170 JURNAL EMACS (Engineering, MAthematics and Computer Science) Vol.7 No.2 May 2025: 167-173

requires
coordination with

the entire

development team
(Mendonça et al.,

2021), (Bajaj et

al., 2021), (Cerny
et al., 2020).

Similarly, re-
testing of new code

can be done

independently from
unrelated parts of

the system

(Mendonça et al.,
2021), (Bajaj et al.,

2021), (Cerny et

al., 2020).

Availability

Monolithic

architectures have
lower availability

compared to

microservices
because the

components in

monolithic
architectures are

integrated into a

single unit.
Therefore, when

an error occurs, it

affects all related
modules/compone

nts.

From the paper, it

can be concluded

that the availability
of microservices is

higher compared to

monolithic
architectures

because each

component is
separate.

Therefore, when an

error occurs in one
part of the system,

the overall system

can continue to
operate without

disruption (Auer et

al., 2021).

Main-tenance

According to

Auer, F et al.

(Auer et al., 2021)
maintenance in

monolithic

architectures is
more complex

compared to

microservices
because the

development team

needs to consider
the overall system

architecture and

the interaction
between

components/modu

les. Therefore,
when developing

and modifying the

system, testing
needs to be

conducted

comprehensively
across all related

components.

Microservices have

easier maintenance
compared to

monolithic

architectures

because each

component is

separate. Thus,
when a bug or code

error occurs, it does

not affect other
components, and

the re-testing

process for updates
or code fixes is

only conducted on

the relevant system
components due to

their loose

coupling nature
(Auer et al., 2021).

Scalability

From the
experimental

results, it can be

concluded that
scaling up a

monolithic

architecture is
better than

microservices in a

single VM
condition with low

complexity and a

smaller number of
users because its

distributed

computing is
lower than that of

microservices.

From the
experimental

results, it can be

concluded that
scaling up

microservices is

superior with
vertical and

horizontal scaling

achieving a total
increase of 30%

compared to

monolithic
architecture, with

Pareto efficiency

higher than
monolithic in cost-

route service to

This means that
when user requests

are too many, the

performance and
efficiency of the

monolithic

architecture will
decrease

(Blinowski et al.,

2022).

check load
distribution. This

demonstrates good

distributed
computing from

the microservices

architecture when
handling large

numbers of

requests. In this
case, the testing

was conducted
using Java and

C#.NET with the

help of the Azure
Cloud platform

(Blinowski et al.,

2022).

Deployment

The paper
concludes that

monolithic

architecture
utilizes the

concept of

simultaneous
deployment. Each

component in the

monolith is tested
first before

deployment, so if

the system
encounters issues

or changes in the

code, the entire
system undergoes

retesting, and the

latest fixes are
queued for

deployment. This
process heavily

depends on team

coordination
within the system

because it is

vulnerable to
failures in CI/CD

during

redeployment
(Malhotra et al.,

2024).

The paper

concludes that
independent

deployment can

enhance the
resource efficiency

of microservices by

implementing the
principles of

continuous

integration/continu
ous development

(CI/CD). This is

because each
component is

deployed

separately and can

be fixed at any

time. However, in
some conditions, it

can be problematic

because
independent

deployment takes

more time and
occurs gradually,

making

documentation
more difficult

(Aksakalli et al.,

2021).

Development effort is tested to gauge the

resources required in the overall system

development process, including total costs incurred

by the development team, system compatibility

levels, and versioning. For example, monolithic

architectures are developed as a unified whole,

resulting in lower costs compared to microservices.

However, in terms of compatibility, microservices

excel due to their containerization capabilities and

flexibility.

Response time is tested to measure the system's

resilience and speed in handling user requests,

typically through throughput indicators. For

example, in a single VM scenario, monolithic

architectures excel in handling user requests

initially. However, as system complexity increases,

microservices, with their distributed computing

171 'DREAMS D': New Matrix Evaluation for Software… (Zulfany Erlisa Rasjid, et.al)

capability through load balancing, become more

effective in handling user requests.

Error handling is tested to assess how systems

developed with specific architectural models

manage errors and faults. For example,

microservices demonstrate superior error handling in

bug contexts because each module within its

components is separate, allowing independent fixes

and re-testing of code.

Availability is tested to measure the total

operational time of the system and the impact of

failures on the overall system. For example, in

microservices, if a failure occurs, the entire system

remains unaffected because each component is

separate. In contrast, in monolithic architectures, a

failure in one component affects the entire system

due to their interconnected nature.

Maintenance is tested to assess the system's

capability to evolve through modifications and fixes.

For example, microservices architecture excels in

large-scale or complex systems and allows

independent system development compared to

monolithic architectures, which are integrated into a

single system.

Scalability is tested to assess the system's ability

to scale horizontally and vertically. For example,

vertical scaling efficiency in microservices can reach

200%, whereas monolithic architectures typically

achieve only 50% efficiency when the number of

VMs increases or system complexity rises.

Horizontal scaling involves adding server instances

to manage user load, while vertical scaling entails

upgrading components such as CPU, memory, and

RAM within a single server.

Deployment is tested to understand how the

system is deployed, including its components and

their integration. For instance, microservices exhibit

independent deployment of components and

modules.

Based on the seven points, the author proposes

the following scores for the overall evaluation

components:

Table 2. Evaluation

Architecture D R E A M S D
Total

Score

Monolithic 2 2 1 1 2 2 2 12

Microservice 2 3 3 3 3 3 2 19

Scoring Criteria:

1. The scale used for evaluation ranges from 1-3,

where:

• 1 means poor,

• 2 means fair,

• 3 means good.

2. Sum the total score from all factors. Based on the

final score:

• A score of 1-7 indicates that the SA is not

suitable for system development.

• A score of 8-15 indicates that the SA is

fairly stable for system development.

• A score of >15 indicates that the SA is

suitable for system development.

As a note, the author's evaluation is based on a

scenario of a complex and highly adaptive system,

with a developer team having diverse programming

language backgrounds.

IV. CONCLUSION

The evaluation matrix model proposed in this

paper aims to simplify the process for development

teams in choosing a suitable software architecture

(SA) for system development. It serves as a

benchmark to determine whether an ongoing or

completed system project should be transitioned to a

different software architecture, considering seven

primary factors that define software quality.

However, further research is crucial to evaluate the

effectiveness of this matrix model with alternative

architectural models. This is particularly important

as scoring assessments in architectures with

uncertain conditions must align closely with desired

software requirements. Moreover, the study's focus

on monolithic and microservices architectures

underscores the need for broader investigation into

other software architecture.

REFERENCES

Aksakalli, I. K., Celik, T., Can, A. B., &

Tekinerdogan, B. (2021). Systematic approach

for generation of feasible deployment

alternatives for microservices. IEEE Access, 9,

29505–29529.

https://doi.org/10.1109/ACCESS.2021.305758

2

Amurrio, A., Azketa, E., Gutierrez, J. J., Aldea, M.,

& Harbour, M. G. (2020). Response-time

analysis of multipath flows in hierarchically-

scheduled time-partitioned distributed real-

time systems. IEEE Access, 8, 196700–

196711.

https://doi.org/10.1109/ACCESS.2020.303346

1

Auer, F., Lenarduzzi, V., Felderer, M., & Taibi, D.

(2021). From monolithic systems to

microservices: An assessment framework.

Information and Software Technology, 137,

106600.

https://doi.org/10.1016/j.infsof.2021.106600

Bajaj, D., Bharti, U., Goel, A., & Gupta, S. C.

(2021). A prescriptive model for migration to

microservices based on SDLC artifacts. Journal

172 JURNAL EMACS (Engineering, MAthematics and Computer Science) Vol.7 No.2 May 2025: 167-173

of Web Engineering, 20(3), 817–852.

https://doi.org/10.13052/jwe1540-9589.20312

Bao, T., Liu, S., & Wang, X. (2011). Research on

trustworthiness evaluation method for domain

software based on actual evidence. Chinese

Journal of Electronics, 20(2), 195–199.

Blinowski, G., Ojdowska, A., & Przybyłek, A.

(2022). Monolithic vs. microservice

architecture: A performance and scalability

evaluation. IEEE Access, 10, 20357–20374.

https://doi.org/10.1109/ACCESS.2022.315280

3

Cerny, T., et al. (2020). On code analysis

opportunities and challenges for enterprise

systems and microservices. IEEE Access, 8,

159449–159470.

https://doi.org/10.1109/ACCESS.2020.301998

5

Chechina, N., et al. (2017). Evaluating scalable

distributed Erlang for scalability and reliability.

IEEE Transactions on Parallel and Distributed

Systems, 28(8), 2244–2257.

https://doi.org/10.1109/TPDS.2017.2654246

Dragoni, N., et al. (2017). Microservices: Yesterday,

today and tomorrow. In Present and Ulterior

Software Engineering (pp. 195–216). Springer.

https://doi.org/10.1007/978-3-319-67425-

4_12

Hasselbring, W. (2018). Software architecture: Past,

present, future. In The Essence of Software

Engineering (pp. 169–184). Cham,

Switzerland: Springer.

Lewis, J., & Fowler, M. (2014, March).

Microservices: A definition of this new

architectural term.

https://www.martinfowler.com/articles/micros

ervices.html

Lim, S., Henriksson, A., & Zdravkovic, J. (2021).

Data-driven requirements elicitation: A

systematic literature review. Social

Networking and Computational Science, 2(1),

1–35.

Malhotra, A., Elsayed, A., Torres, R., &

Venkatraman, S. (2024). Evaluate canary

deployment techniques using Kubernetes,

Istio, and Liquibase for cloud native enterprise

applications to achieve zero downtime for

continuous deployments. IEEE Access, 12,

87883–87899.

https://doi.org/10.1109/ACCESS.2024.341608

7

Mendonça, N. C., Box, C., Manolache, C., & Ryan,

L. (2021). The monolith strikes back: Why

Istio migrated from microservices to a

monolithic architecture. IEEE Software, 38(5),

17–22.

https://doi.org/10.1109/MS.2021.3080335

Pfleeger, S. L., & Atlee, J. M. (2015). Software

engineering: Theory and practice. Pearson

Phung, K., Ogunshile, E., & Aydin, M. (2023).

Error-Type—A novel set of software metrics

for software fault prediction. IEEE Access, 11,

30562–30574.

https://doi.org/10.1109/ACCESS.2023.326241

1

Posta, C. (2016). Microservices for Java developers:

A hands-on introduction to frameworks

containers. O’Reilly Media.

Rajesh, R. (2016). Spring microservices. Packt

Publishing.

Sahlabadi, M., Muniyandi, R. C., Shukur, Z., &

Qamar, F. (2022). Lightweight software

architecture evaluation for industry: A

comprehensive review. Sensors, 22(3), 1252.

Sommerville, I., & Sawyer, P. (2014). Requirements

engineering: A good practice guide. John

Wiley & Sons.

Tlili, L., & Chelbi, A. (2022). Availibility modeling

for dependent competing failure process of

deteriorating systems. In 2022 IEEE

Information Technologies & Smart Industrial

Systems (ITSIS) (pp. 1–6). IEEE.

https://doi.org/10.1109/ITSIS56166.2022.101

18425

Venters, C. C., Capilla, R., Betz, S., Penzenstadler,

B., Crick, T., Crouch, S., et al. (2018). Software

sustainability: Research and practice from a

software architecture viewpoint. Journal of

Systems and Software, 138, 174–188.

Yan, B., Yao, H.-P., Nakamura, M., Li, Z.-F., &

Wang, D. (2020). A case study for software

quality evaluation based on SCT model with

BP neural network. IEEE Access, 8, 56403–

56414.

https://doi.org/10.1109/ACCESS.2020.298187

2

Yang, F., Mei, H., Lu, J., & Jin, Z. (2002). Some

discussion on the development of software

technology. Acta Electronica Sinica, 30(12A),

1901–1906.

Yang, T., Jiang, Z., Shang, Y., & Norouzi, M.

(2021). Systematic review on next-generation

web-based software architecture clustering

models. Computer Communications, 167, 63–

74.

Zhang, X., Tan, Y., & Yang, Z. (2021). Analysis of

impact of requirement change on product

development progress based on system

dynamics. IEEE Access, 9, 445–457.

https://doi.org/10.1109/ACCESS.2020.304675

3

Zhou, H., Gao, S., Qi, F., Luo, X., & Qian, Q. (2020).

Selective maintenance policy for a series-

parallel system considering maintenance

priority of components. IEEE Access, 8,

173 'DREAMS D': New Matrix Evaluation for Software… (Zulfany Erlisa Rasjid, et.al)

23221–23231.

https://doi.org/10.1109/ACCESS.2020.296927

9

