JURNAL EMACS e-ISSN: 2686-2573
[Engineering, MAEhematics and Computer Science] Vol.7 No.2 May 2025: 167-173 DOI: 10.21512/emacsjournal.v7i2.13003

‘DREAMS D’: New Matrix Evaluation
for Software Architecture

Zulfany Erlisa Rasjid"", Ivana Yoshe Aldora?, Welly Piyono?,
Risma Yulistiani‘, Hady Pranoto®

1> Computer Science Program, Computer Science Department, School of Computer Science,
Bina Nusantara University,
Jakarta, Indonesia 11480
zulfany@binus.ac.id, ivana.aldora@binus.ac.id, welly.piyono@binus.ac.id,
risma.yulistiani@binus.ac.id, hadypranoto@binus.ac.id

*Correspondence: zulfany@binus.ac.id

Abstract — The microservices software architecture
is highly popular and commonly used in developing
large-scale systems. Does this mean that
microservices are superior, or could older
architectures like monolithic be more adaptable to
modern developments? The selection of software
architecture is crucial to support overall system
performance, quality, and user experience. Effective
evaluation also plays a significant role in assessing
system performance. In this paper, an evaluation
matrix model is proposed, called 'DREAMS D,’
comprising of seven vital components to test the
quality of systems built using specific architectures.
The focus is on microservices and monolithic
architecture as our sample Software Architectures.
The evaluation is conducted through a systematic
review, and each architecture is scored based on
factors such as Development, Response time, Error
handling, Availability, Maintenance, Scalability,
and Deployment. The result shows that
microservices architecture scores higher in most
evaluation criteria, suggesting better suitability for
complex and adaptive systems. However, monolithic
architecture may still be appropriate for simpler
systems due to its lower cost and straightforward
integration. This study provides a structured and
measurable framework for assisting developers and
organizations in making strategic decisions when
choosing or transitioning between software
architectures. The DREAMS D matrix can be used
as a reference model for future evaluations or as a
foundation for extending the framework to other
architectural paradigms such as serverless or event-
driven systems.

Keywords: Microservices;, Monolithic; Sofiware
Architecture; Deployment; Evaluation

I. INTRODUCTION

Software Architecture (SA) plays a fundamental
role in the development of systems (Lim et al., 2021).
SA can be defined as the relationship among
components, functionalities, and design principles
within a software system (Sahlabadi et al., 2022),
(Yang et al, 2021), (Venters et al, 2018),
(Hasselbring, 2018). The appropriate selection of
software architecture can enhance system credibility
(Yang et al., 2002), thereby influencing user
experience (Bao et al., 2011) and creating software
that is high-quality, robust, and adaptable. One
method to assess software quality is through
evaluation (Yan et al., 2020). Due to that reasons, an
evaluation matrix is proposed to measure the quality
of software architecture using several key factors:
development cost, development effort, response time,
error fault, availability, maintenance, scalability, and
deployment, in short the ‘DREAMS D’ matrix.

The methodology employed is a systematic
review, presented as a comparison table of evaluation
factors between monolithic and microservice
architectures, both of which are prevalent in software
development across various industry scales.

The objective of this paper is to assist developers
in selecting an appropriate SA during the software
design process before entering the deployment stage
or determine the importance of switching to a
different system architecture (SA) in the
development of an existing application.

1.1Literature Review

Evaluation in the context of software involves
systematic assessment of the quality, performance,
reliability, and suitability of software according to
predetermined requirements and objectives
(Sommerville & Sawyer, 2014). Evaluation is crucial
to ensure that the developed software meets
minimum expected standards such as performance,

Copyright © 2025 167

reliability, security, and functionality. Additionally,

evaluation is valuable for optimizing software

performance by identifying weaknesses that need
improvement, thereby making issue identification
more efficient before user deployment (Pfleeger &

Atlee, 2015). The evaluation matrix we propose

includes several factors:

* Development is an effort to improve, enhance,
and adapt the product to follow current trends,
preferences, and social conditions (Zhang et al.,
2021).

* Response time is a critical component in system
performance evaluation as it relates to how
quickly the system can respond to user actions to
produce appropriate outputs (Amurrio et al.,
2020).

* The concept of software fault proneness is
unclear and can be evaluated through multiple
methods. Errors can arise at any phase of the
SDLC, and some may escape detection during
testing, only to become apparent during actual
use in the field (Phung et al., 2023).

* Availability refers to the system's ability to
sustain operation or accessibility despite
component failures or cyber-attacks (Tlili &
Chelbi, 2022).

* Maintenance can be defined as the system's
ability to be modified, upgraded, and repaired, or
its adaptability (Zhou et al., 2020).

* Scalability is the system's ability to handle
increased workloads without compromising
overall system performance (Chechina et al.,
2017).

* Deployment is a series of procedures to activate
all software services so they can be accessed by
users (Aksakalli et al., 2021).

These seven factors are considered sufficient to
support the development of robust, efficient software
systems that can adapt to future needs. In these case
the evaluation conducted using two types of SA:
microservices and monolithic architectures.

1.2 Microservices and Monolithic Architecture

Microservices are a software development
model that breaks down each function/feature into
smaller, simpler components, making deployment
easier due to their independent nature (Lewis &
Fowler, 2014), (Posta, 2016), (Rajesh, 2016). This
architecture was first pioneered by Netflix in 2011
and gained popularity in subsequent years, being
adopted by companies such as Amazon, eBay,
Zalando, Spotify, Uber, Airbnb, LinkedIn, Twitter,
Groupon, and Coca-Cola. The architecture of
Microservice can be seen in figure 1.

The microservice architecture consists of two
services: 'city service' and 'route service', each with
separate databases and web API routes. When a user
accesses one or both services, the user request is

forwarded separately through the API gateway to the
appropriate service. Once the request has been
processed, the web API of each service sends the
response back to the API gateway, which then
forwards it to the user as output.

Monolithic architecture combines all modules,
features, functions, databases, and servers into a
single application unit (Dragoni et al., 2017). This
architecture is still widely used today because of its
centralized control over interconnected
components.The architecture of Monolithic can be
see in figure 2.

BASIC MICROSERVICE APPLICATION

-

AP GATEWAY J

e

ERVICE P -~ " ROUTE MICROSE H'flfli\‘

~
CITY WEB API [ROUTE WEB AP|]

m A |

~
[CITY SERVICE [ROUTE SERVICE]

Figure 1. Microservices Logical Architecture

MONOLITHIC APPLICATION
CITY AND ROUTE WEB AFI}
|
SERVICES
- o

Figure 2. Monolithic Logical Architecture

The monolithic architecture consists of two
services, 'city service' and 'route service', combined
into a single component with a shared database and
a single web API. When a user makes a request, it is
forwarded through the city and route web API and
directly sent to the service for processing. Once the
request is processed, the response is sent back to the
user through the city and route web API as output.

In summary, evaluating SA with DREAMS D
matrix evaluation is crucial for developing software
systems that meet high standards of performance,
reliability, and adaptability.

II. METHODS

The method used in these paper is a systematic
review through collecting data from several journals
related to the evaluation of monolithic and
microservice architecture software, comparing
factors such as ease of maintenance, availability,
response time, development, deployment,
error/fault, and scalability.

168 JURNAL EMACS [Engineering, MAthematics and Computer Science] Vol.7 No.2 May 2025: 167-173

In the maintenance section, our focus is on
evaluating the ease with which developers can
modify the software post-release. For availability
section, this paper assess the likelihood of the
system, whether built with microservice or
monolithic architecture, experiencing server
downtime, errors, and other failures. The response
time section examines the system's speed in
responding to user actions when accessing software
features. In the scalability section, this paper wants
to evaluate the effort required by developers to
enhance or add new features in the future.

In the deployment section, the paper aims to
evaluate the ease of the deployment process for both
architectures and its impact on the overall system.
The development section assesses the effort required
by developers during system development, including
the software testing process. Finally, the error/fault
section examines the overall impact of errors on the
system and the effectiveness of the system's recovery
process.

Next, in the process of collecting journals,
authors separated each journal by keywords
following the pattern ‘"factor" + '"software
architecture,” for example, "maintenance in
microservice." If no journals were found using these
keywords, authors modified the keywords to "factor"
+ "analysis" or "factor" + "in software," such as
"availability analysis." Another approach that this
paper took was to gather several systematic review
journals related to microservice and monolithic
architectures and then search for additional factors
not covered in these journals by consulting other
general journals.

III. RESULTS AND DISCUSSION

DREAMS D MATRIX selects several critical
components to test and analyze the quality of
software developed with specific architectures.
Shown in Table 1.

Table 1. Components to test and analyze

Scaling

Monolithic Microservice
Factors
Monolithic From the paper, it
architectures are can be concluded
typically that microservices
developed as a have an advantage
unified whole in development
simultaneously, so ~ when dealing with
each module is higher complexity
integrated into one and more
Development with complexity = components
ranging from low because each
to high. Therefore, module in the
in development, system is

there are specific independent and
requirements such can adapt to

as compatible containerization,
operating systems, thereby facilitating
versions, and deployment across

others, making it

less flexible
compared to
microservices.

However, in terms
of cost, monolithic
architectures are
cheaper because
the development
process is
conducted only
once on a large
scale for the entire
system
(Mendonga et al.,
2021), (Bajaj et
al., 2021).

different operating
systems. On the
other hand, this
increases the
development costs
for each separate
component/module
of the system
(Malhotra et al.,
2024).

Response
Time

From the
experimental

results, it can be
concluded that
when the number
of virtual
machines (VMs)
used is still 1, the
performance of

monolithic
architecture is
better than that of
microservices.

This is evidenced
by the throughput
(handling request)
reaching 24% with
Java, while
microservices

with a single VM
(MSx1) only reach

9%. The
monolithic

architecture is
capable of

handling 2 times
and 1.37 times
more requests in
NET and Java,
respectively,

compared to
microservices.

The CPU usage
and Java/NET
configuration do
not significantly
affect throughput,
which is around
3.5% (Blinowski

From the
experimental
results, it can be
concluded that as
the number of
virtual machines
(VMs) increases,
the performance of
microservices is
better than that of
monolithic
architectures. This
is evidenced by the

vertical scaling
efficiency of
microservices

reaching 200%,
compared to only
50% for monolithic
architectures.
Furthermore, in
terms of distributed
computing based
on throughput,
microservices —are
more dominant
compared to
monolithic
architectures, even
though both are
already Pareto
efficient
(Blinowski et al.,
2022).

Error/Fault

et al., 2022).

Monolithic Microservices have
architectures have better error
more complex handling compared
error handling to monolithic

involving testing
and integration of
the entire system
when there are
changes to the
code or system
development

because all
modules are
interconnected as
a single unit. This

architectures
because of their
independent
nature. This allows
fixes and updates to
be applied
separately to
specific modules
without affecting
unrelated
components.

'DREAMS D': New Matrix Evaluation for Software... (Zulfany Erlisa Rasjid, et.al)

169

requires
coordination with
the entire

development team
(Mendonga et al.,
2021), (Bajaj et
al.,, 2021), (Cerny
et al., 2020).

Similarly, re-
testing of new code
can be done
independently from
unrelated parts of
the system
(Mendonga et al.,
2021), (Bajaj et al.,
2021), (Cerny et
al., 2020).

Availability

Monolithic
architectures have
lower availability

compared to
microservices
because the
components in
monolithic

architectures are
integrated into a
single unit.
Therefore, when
an error occurs, it
affects all related

From the paper, it
can be concluded
that the availability
of microservices is
higher compared to

monolithic
architectures
because each
component is
separate.

Therefore, when an
erTor occurs in one
part of the system,
the overall system
can continue to

Main-tenance

modules/compone operate without
nts. disruption (Auer et

al., 2021).
According to

Auer, F et al
(Auer et al., 2021)
maintenance in

monolithic
architectures is
more complex
compared to
microservices
because the

development team
needs to consider
the overall system
architecture and
the interaction
between

components/modu
les. Therefore,
when developing
and modifying the

system, testing
needs to be
conducted

comprehensively
across all related

Microservices have
easier maintenance

compared to
monolithic
architectures
because each
component is
separate. Thus,

when a bug or code
error occurs, it does
not affect other
components, and
the re-testing
process for updates
or code fixes is
only conducted on
the relevant system
components due to
their loose
coupling nature
(Auer et al., 2021).

components.
From the From the
experimental experimental
results, it can be results, it can be
concluded that concluded that
scaling up a scaling up
monolithic microservices s
architecture is superior with
better than vertical and
Scalability n}icroservices in a hori‘zoptal scaling
single VM achieving a total

condition with low
complexity and a
smaller number of
users because its

distributed
computing is
lower than that of
microservices.

increase of 30%
compared to
monolithic

architecture, with
Pareto efficiency
higher than
monolithic in cost-
route service to

This means that check load
when user requests distribution. This
are too many, the demonstrates good
performance and distributed

efficiency of the computing from
monolithic the microservices
architecture will architecture when
decrease handling large

(Blinowski et al., numbers of
2022). requests. In this
case, the testing
was conducted

using Java and
C#NET with the
help of the Azure
Cloud platform
(Blinowski et al.,

2022).

The paper
concludes that 11° paper
monolithic concludes that
architecture independent
utilizes the deployment can
concept of enhance the
Simultlzmeous resource efficiency
deployment. Each of microservices by
component .in the implémenting the
monolith is tested Eﬂﬁfﬂﬁﬁﬁs of
first before . :)
deployment, so if integration/continu
the ;ystem ous development
encounters issues (CVCD). This is

: because each
or changes in the component "

th ti
Deployment code, the entire deployed

system undergoes
retesting, and the
latest fixes are

separately and can
be fixed at any
time. However, in

queued for . .
deployment. This some conditions, it
rocess };eavil can be problematic
P Y because
depends on team .
. independent
coordination

deployment takes
more time and
occurs gradually,

within the system
because it is
vulnerable to

failures in cycp making
during documentatlgn
redeployment more difficult
(Malhotra et al. (Aksakalli et al.,
2024). 2021).

Development effort is tested to gauge the
resources required in the overall system
development process, including total costs incurred
by the development team, system compatibility
levels, and versioning. For example, monolithic
architectures are developed as a unified whole,
resulting in lower costs compared to microservices.
However, in terms of compatibility, microservices
excel due to their containerization capabilities and
flexibility.

Response time is tested to measure the system's
resilience and speed in handling user requests,
typically through throughput indicators. For
example, in a single VM scenario, monolithic
architectures excel in handling user requests
initially. However, as system complexity increases,
microservices, with their distributed computing

170 JURNAL EMACS [Engineering, MAthematics and Computer Science] Vol.7 No.2 May 2025: 167-173

capability through load balancing, become more
effective in handling user requests.

Error handling is tested to assess how systems
developed with specific architectural models
manage errors and faults. For example,
microservices demonstrate superior error handling in
bug contexts because each module within its
components is separate, allowing independent fixes
and re-testing of code.

Availability is tested to measure the total
operational time of the system and the impact of
failures on the overall system. For example, in
microservices, if a failure occurs, the entire system
remains unaffected because each component is
separate. In contrast, in monolithic architectures, a
failure in one component affects the entire system
due to their interconnected nature.

Maintenance is tested to assess the system's
capability to evolve through modifications and fixes.
For example, microservices architecture excels in
large-scale or complex systems and allows
independent system development compared to
monolithic architectures, which are integrated into a
single system.

Scalability is tested to assess the system's ability
to scale horizontally and vertically. For example,
vertical scaling efficiency in microservices can reach
200%, whereas monolithic architectures typically
achieve only 50% efficiency when the number of
VMs increases or system complexity rises.
Horizontal scaling involves adding server instances
to manage user load, while vertical scaling entails
upgrading components such as CPU, memory, and
RAM within a single server.

Deployment is tested to understand how the
system is deployed, including its components and
their integration. For instance, microservices exhibit
independent deployment of components and
modules.

Based on the seven points, the author proposes
the following scores for the overall evaluation
components:

Table 2. Evaluation

Total

Score
Monolithic 2 2 1 1 2 2 2 12
Microservice 2 3 3 3 3 3 2 19

Architecture D R E A M S

Scoring Criteria:

1. The scale used for evaluation ranges from 1-3,
where:
e | means poor,
e 2 means fair,
e 3 means good.

2. Sum the total score from all factors. Based on the
final score:

e A score of 1-7 indicates that the SA is not
suitable for system development.
e A score of 8-15 indicates that the SA is
fairly stable for system development.
e A score of >15 indicates that the SA is
suitable for system development.
As a note, the author's evaluation is based on a
scenario of a complex and highly adaptive system,
with a developer team having diverse programming
language backgrounds.

IV. CONCLUSION

The evaluation matrix model proposed in this
paper aims to simplify the process for development
teams in choosing a suitable software architecture
(SA) for system development. It serves as a
benchmark to determine whether an ongoing or
completed system project should be transitioned to a
different software architecture, considering seven
primary factors that define software quality.
However, further research is crucial to evaluate the
effectiveness of this matrix model with alternative
architectural models. This is particularly important
as scoring assessments in architectures with
uncertain conditions must align closely with desired
software requirements. Moreover, the study's focus
on monolithic and microservices architectures
underscores the need for broader investigation into
other software architecture.

REFERENCES

Aksakalli, I. K., Celik, T., Can, A. B., &
Tekinerdogan, B. (2021). Systematic approach
for generation of feasible deployment
alternatives for microservices. IEEE Access, 9,
29505-29529.
https://doi.org/10.1109/ACCESS.2021.305758
2

Amurrio, A., Azketa, E., Gutierrez, J. J., Aldea, M.,
& Harbour, M. G. (2020). Response-time
analysis of multipath flows in hierarchically-
scheduled time-partitioned distributed real-
time systems. IEEE Access, 8, 196700—
196711.
https://doi.org/10.1109/ACCESS.2020.303346
1

Auer, F., Lenarduzzi, V., Felderer, M., & Taibi, D.
(2021). From monolithic systems to
microservices: An assessment framework.
Information and Software Technology, 137,
106600.
https://doi.org/10.1016/j.infsof.2021.106600

Bajaj, D., Bharti, U., Goel, A., & Gupta, S. C.
(2021). A prescriptive model for migration to
microservices based on SDLC artifacts. Journal

'DREAMS D': New Matrix Evaluation for Software... (Zulfany Erlisa Rasjid, et.al) 171

of Web Engineering, 20(3), 817-852.
https://doi.org/10.13052/jwe1540-9589.20312
Bao, T., Liu, S., & Wang, X. (2011). Research on
trustworthiness evaluation method for domain
software based on actual evidence. Chinese
Journal of Electronics, 20(2), 195-199.

Blinowski, G., Ojdowska, A., & Przybylek, A.
(2022). Monolithic ~ vs. microservice
architecture: A performance and scalability
evaluation. IEEE Access, 10, 20357-20374.
https://doi.org/10.1109/ACCESS.2022.315280
3

Cerny, T., et al. (2020). On code analysis
opportunities and challenges for enterprise
systems and microservices. IEEE Access, 8,
159449-159470.
https://doi.org/10.1109/ACCESS.2020.301998
5

Chechina, N., et al. (2017). Evaluating scalable
distributed Erlang for scalability and reliability.
IEEE Transactions on Parallel and Distributed
Systems, 28(8), 2244-2257.
https://doi.org/10.1109/TPDS.2017.2654246

Dragoni, N., et al. (2017). Microservices: Yesterday,
today and tomorrow. In Present and Ulterior
Software Engineering (pp. 195-216). Springer.
https://doi.org/10.1007/978-3-319-67425-

4 12

Hasselbring, W. (2018). Software architecture: Past,
present, future. In The Essence of Software
Engineering (pp- 169-184). Cham,
Switzerland: Springer.

Lewis, J., & Fowler, M. (2014, March).
Microservices: A definition of this new
architectural term.
https://www.martinfowler.com/articles/micros
ervices.html

Lim, S., Henriksson, A., & Zdravkovic, J. (2021).
Data-driven requirements elicitation: A

systematic literature review. Social
Networking and Computational Science, 2(1),
1-35.

Malhotra, A., Elsayed, A., Torres, R., &
Venkatraman, S. (2024). Evaluate canary
deployment techniques using Kubernetes,
Istio, and Liquibase for cloud native enterprise
applications to achieve zero downtime for
continuous deployments. IEEE Access, 12,
87883-87899.
https://doi.org/10.1109/ACCESS.2024.341608
7

Mendonga, N. C., Box, C., Manolache, C., & Ryan,
L. (2021). The monolith strikes back: Why
Istio migrated from microservices to a
monolithic architecture. IEEE Software, 38(5),
17-22.
https://doi.org/10.1109/MS.2021.3080335

Pfleeger, S. L., & Atlee, J. M. (2015). Software
engineering: Theory and practice. Pearson
Phung, K., Ogunshile, E., & Aydin, M. (2023).

Error-Type—A novel set of software metrics
for software fault prediction. IEEE Access, 11,
30562-30574.
https://doi.org/10.1109/ACCESS.2023.326241
1

Posta, C. (2016). Microservices for Java developers:
A hands-on introduction to frameworks
containers. O’Reilly Media.

Rajesh, R. (2016). Spring microservices. Packt
Publishing.

Sahlabadi, M., Muniyandi, R. C., Shukur, Z., &
Qamar, F. (2022). Lightweight software
architecture evaluation for industry: A
comprehensive review. Sensors, 22(3), 1252.

Sommerville, 1., & Sawyer, P. (2014). Requirements
engineering: A good practice guide. John
Wiley & Sons.

Tlili, L., & Chelbi, A. (2022). Availibility modeling
for dependent competing failure process of
deteriorating systems. In 2022 IEEE
Information Technologies & Smart Industrial
Systems (ITSIS) (pp. 1-6). IEEE.
https://doi.org/10.1109/ITSIS56166.2022.101
18425

Venters, C. C., Capilla, R., Betz, S., Penzenstadler,
B., Crick, T., Crouch, S., etal. (2018). Software
sustainability: Research and practice from a
software architecture viewpoint. Journal of
Systems and Software, 138, 174—188.

Yan, B., Yao, H.-P., Nakamura, M., Li, Z.-F., &
Wang, D. (2020). A case study for software
quality evaluation based on SCT model with
BP neural network. IEEE Access, 8, 56403—
56414.
https://doi.org/10.1109/ACCESS.2020.298187
2

Yang, F., Mei, H., Lu, J., & Jin, Z. (2002). Some
discussion on the development of software
technology. Acta Electronica Sinica, 30(12A),
1901-1906.

Yang, T., Jiang, Z., Shang, Y., & Norouzi, M.
(2021). Systematic review on next-generation
web-based software architecture clustering
models. Computer Communications, 167, 63—
74.

Zhang, X., Tan, Y., & Yang, Z. (2021). Analysis of
impact of requirement change on product
development progress based on system
dynamics. IEEE Access, 9, 445-457.
https://doi.org/10.1109/ACCESS.2020.304675
3

Zhou, H., Gao, S., Qi, F., Luo, X., & Qian, Q. (2020).
Selective maintenance policy for a series-
parallel system considering maintenance
priority of components. IEEE Access, 8,

172 JURNAL EMACS [Engineering, MAthematics and Computer Science] Vol.7 No.2 May 2025: 167-173

23221-23231.
https://doi.org/10.1109/ACCESS.2020.296927
9

'DREAMS D': New Matrix Evaluation for Software... (Zulfany Erlisa Rasjid, et.al) 173

