

JURNAL EMACS
(Engineering, MAthematics and Computer Science) Vol.7 No.1 January 2025: 109-120

109

e-ISSN: 2686-2573

DOI:

10.21512/emacsjournal.v6

i3.11968

DOI: 10.21512/emacsjournal.v7i1.12770

DOI: 10.21512/emacsjournal.v6i3.11968

Copyright © 2025

A Horizontally Scalable WebSocket Architecture for

Cost-Effective Online Examination Proctoring

System on AWS Cloud Infrastructure

Eko Cahyo Nugroho

 Computer Science Department, School of Computer Science,

Bina Nusantara University,

Jakarta, Indonesia 11480

eko.nugroho003@binus.ac.id

Correspondence: eko.nugroho003@binus.ac.id

Abstract - In this research work we present the

cost-effective implementation of a WebSocket

server with a horizontal scaling feature on AWS

Cloud Service. Sokrates System, a SaaS

provider for schools in Indonesia, faces

challenges with AWS API Gateway for

establishing WebSocket connections as it

proves relatively expensive for their client

schools. This research focuses on reducing

infrastructure costs while maintaining

technology quality. The solution presented in

this study proposes an on-premise WebSocket

server deployed at AWS EC2 instances. The

server utilizes Node. js's cluster module to make

the most out of the CPU's cores and has also

implemented a Redis pub/sub mechanism to

easily horizontal scale it to many EC2

instances. The system architecture utilizes

DynamoDB to store students' proctoring status

recorded on the first attempt at the quiz. Then,

the real status update is delivered by WebSocket

message. Testing results show the system can

handle 10,000 concurrent users with just 12

t3a.small instances, achieving an average

latency of 45ms and 95th percentile latency of

92ms. Compared to using API Gateway as the

WebSocket server, this solution achieves a

22.1% reduction in monthly infrastructure

costs. In the production environment, it

demonstrates effective real-time monitoring

capabilities for online examinations, including

student activity tracking, automated

disconnection detection, and proctor-student

interaction features, providing schools with a

reliable and scalable proctoring solution.

Keywords: Server Management; LMS

Proctoring; Cloud Computing; Message

Broker; Horizontal Scaling

I. INTRODUCTION

The evolution of e-learning technology has

experienced significant acceleration,

particularly since the COVID-19 pandemic,

fundamentally transforming how educational

institutions deliver learning and assessment.

One of the critical challenges in online learning

is maintaining exam security through proper

proctoring systems. Cutting-edge Learning

Management Systems (LMS) involve the

implementation of proctoring methods that are

able to not only track student activity in real-

time, but they can also detect any suspicious

acts and guarantee truthful behavior at online

examinations.

Proctoring systems have evolved beyond

simple video monitoring to incorporate

biometric and multimodal technologies, such as

face, voice, and fingerprint recognition. These

advancements are designed to authenticate

users more reliably and ensure the security of

online examinations (Han et al., 2024). Also,

the integration of proctoring systems with LMS

platforms facilitates seamless long-distance

assessment processes while maintaining robust

examination. However, these developments are

not without any challenges, including ethical

and data privacy issues. Proctoring systems

must focus on these concerns by ensuring

110

JURNAL EMACS (Engineering, MAthematics and Computer Science) Vol.7 No.1 January 2025: 109-120

transparency, respecting student privacy, and

complying with data protection.

The normal way of using real-time proctoring

systems on cloud platforms like AWS usually

depends on WebSocket connections via API

Gateway.

Figure 1. API Gateway Architecture (Sarat Dyuthi

et al., 2024)

The WebSocket setup in AWS API Gateway

uses a serverless architecture. Each time there is

a connection, message, or disconnection, it

triggers a Lambda function. When a client starts

a WebSocket connection, API Gateway

generates a unique connection ID and keeps

track of the connection state. Each message

received via this connection calls a Lambda

function, which handles the message and may

send replies to other connected clients using the

API Gateway's management API. This design

offers good scalability and requires little

infrastructure management, but it runs on a pay-

per-use basis, which can result in high costs.

This method brings high costs for schools. As

per AWS pricing info in the official site

(Amazon Web Services, n.d., WebSocket APIs

section), in the Asia Pacific (Singapore) area,

the WebSocket API costs $1.15 for every

million messages for the first billion messages

and $0.95 for every million messages after that.

There’s also a fee of $0.288 for each million

connection minutes. AWS does offer a free tier

that gives one million messages and 750,000

connection minutes for a year, but that is not

enough for large projects. For example, a school

with 1,000 students taking a 3-hour test, sending

updates every 5 seconds, would create around

2.16 million messages and 180,000 connection

minutes in one session. This leads to high

operating costs, which can be a financial burden

for many schools.

These financial issues make it important to look

for new ways to design proctoring systems. This

study tackles these issues by suggesting a

different setup that uses a WebSocket server

with smart scaling deployed on AWS EC2. It

uses Node.js clustering for better resource use

and Redis pub/sub to relay WebSocket

messages to specific clients. This method not

only reduces the costs but also provides the

stability and scalability needed for large online

exam proctoring.

This research can help deal with technical and

cost issues that schools face when using online

proctoring systems. Using AWS cloud services

well and keeping costs low allows schools to

keep exams secure and scalable without high

infrastructure costs. The suggested proctoring

system supports the main goals of making

online learning safe, scalable, and focused on

students.

WebSocket technology has become important

in many areas, especially in real-time

applications like proctoring systems. This part

looks at studies that show the benefits and uses

of WebSocket for improving real-time

communication and data sharing.

A key study related to websocket and API

Gateway implementation (Sarat Dyuthi et al.,

2024) examines how to set up real-time event

processing using API Gateway with WebSocket

APIs. The study focuses on the two-way

communication feature of WebSocket, allowing

quick data transfer between clients and servers.

This is very useful for proctoring systems that

need real-time oversight and interaction

between exam supervisors and exam

participants. The authors talk about how to

manage connection states, deal with errors, and

ensure safe access, which are all important for

keeping proctoring environments secure.

Also, another study related to optimize

WebSocket (Maulana et al., 2019) looks at

improving data transfer speeds in real-time chat

apps with WebSocket technology.

111

A Horizontally Scalable WebSocket Architecture … (Eko Cahyo Nugroho)

Figure 2. Websocket Connection Handler (Maulana

et al., 2019)

The results show that WebSocket cuts down

latency much better than traditional AJAX

methods. Data reveals that WebSocket uses

only 9.63% of data, while AJAX can use up to

90.37%. This makes WebSocket a better option

for applications needing fast and responsive

communication. This efficiency is crucial in a

proctoring system, where quick notifications

can greatly affect the exam process. In these

settings, any delays in communication can

cause confusion or even security problems,

risking the assessment's integrity.

WebSocket keeps a connection open, which

allows real-time data sharing, letting examiners

watch students all the time without needing to

send requests repeatedly. This constant

connection improves the system's

responsiveness and cuts down the work

involved in starting new connections for each

interaction. Thus, examiners can quickly send

alerts or instructions to students, making sure

any problems are dealt with rapidly.

Moreover, the study points out that WebSocket

can improve user experience by reducing delays

and allowing a smooth flow of information. For

example, during an online exam, if a student has

a technical problem or wants to ask a question,

they can quickly talk to the proctor through a

chat system using WebSocket. This fast

feedback helps create a supportive atmosphere

that can ease students' worries and make the

exam process smoother.

WebSocket technology not only makes

communication speed better but also improves

interactions between students and proctors. It

allows for features like live video and real-time

screen sharing in proctoring systems, which

enhances how monitoring is done. By using

WebSocket, developers can create proctoring

solutions that focus on both security and user

engagement during exams.

The basic concept of WebSocket technology

and its real-time functions was explored by

Pimentel and Nickerson. They showed that

WebSocket supports efficient two-way

communication, which is vital for transmitting

data in real-time.

In proctoring systems, Han et al. conducted a

thorough review of literature that showed

digital proctoring is increasingly important in

higher education and highlighted the need for

dependable real-time monitoring. This idea is

also backed by Nurpeisova et al.’s study on

creating proctoring systems for online tests,

which stressed the importance of real-time

communication for upholding exam integrity.

Skvorc et al. looked into how well WebSocket

works, checking the WebSocket protocol for

web streams that operate in both directions.

They shared important information about how

well it works and its dependability in real-time

uses. Alexeev et al. also provided key

information on smart load balancing methods

for WebSocket services that can grow, focusing

especially on how these principles apply in

environments that use distributed computing.

In the other research related to this work,

proposed an efficient resource management

strategy for federated cloud environments in

Infrastructure as a Service (IaaS) delivery

(Samha et al., 2024). To be specific, the

architecture is introduced a Trust Manager

(TM) that helps to evaluate the Service Level

Agreement (SLA) violations between the cloud

users and the service providers. The

arrangement uses a Broker Manager (BM) as an

intermediary that helps to the resource

allocation, and service negotiation between the

providers and the users.

By means of virtualization technology, the

architecture is established to cater to ensuring

that Virtual Machines (VMs) operate

independently in a multi-tenant environment by

112

JURNAL EMACS (Engineering, MAthematics and Computer Science) Vol.7 No.1 January 2025: 109-120

implementing the Banker's algorithm for

resource allocation and deadlock prevention. In

fact, a plus of the system is the integration of a

deep Q-based algorithm for service provider

ranking and selection, which enables effective

resource utilization and service delivery.

The results of their experiment were better than

the traditional cloud models output, adding

extra information such as better average

reaction time and reduced SLA exceptions.

Besides, the message handling system based on

brokers ensured better utilization of throughput

and service request handling of cloud, and thus

it just becomes the area of focus where robust

message broking capabilities of scalable web

applications are required.

With its valuable insights, this research brings

significant benefits in terms of cloud

management and message broking for online

examination systems, which demand a highly

efficient allocation of resources through a

message delivery system that can be trusted.

In the other research related to implement

message queue system, were figuring out how

to optimize high-performance distributed real-

time stream processing systems, which

especially in this case include the improvement

of message queue performance with Kafka

(Jiang et al., 2019). Here's how they found out

that Kafka, as a distributed messaging system,

has a number of specific benefits in both

horizontal scalability and throughputs, which

ultimately makes it the best choice in situations

where message producers and consumers

operate at different speeds.

In the Jiang's research found that Kafka's

performance is a key factor in the overall

functioning of stream processing systems,

especialy in use cases demanding the rapid data

reception from producers, as well as quick

delivery to consumers. Their architecture

borrows Kafka's ability to support low-latency

message distribution while also covering both

real-time and offline message processing.

One important part of their work was using

Kafka cat technology, which offered a way to

handle messages without JVM. This change led

to less resource use and better performance than

usual message systems. Their tests showed that

this change made processing quicker and cut

down on network transmission costs in the

message queue setup.

The research also pointed out how memory-

based file systems can help improve message

queue efficiency. By using memory for storing

data in Kafka, they showed clear gains in

reading and writing data quickly compared to

using disks. This helped fix key I/O issues in

high-speed messaging situations. This

technique worked especially well in situations

where quick message processing and delivery

were needed, achieving read/write speeds up to

six times faster than regular disk systems..

This research looked at Kafka use, but the main

ideas and ways to improve performance apply

to Redis too. Redis has in-memory storage and

pub/sub functions that fit well for using similar

message broking systems in online exam

proctoring. This provides similar advantages,

like fast response times and high performance.

Recent uses of WebSocket in different areas

have shown good results. Soewito et al. showed

how well WebSocket works for real-time

applications (Soewito et al., 2019), and Sarat

Dyuthi's research on setting up real-time event

processing with AWS and WebSocket APIs

gives useful information about cloud-based

uses (Sarat Dyuthi et al., 2019).

This collection of research gives a solid base for

making a WebSocket server system that can

grow horizontally using Redis as a message

broker in AWS for proctoring systems. The

studies show that both the theory and real-world

uses of the important technologies work well,

while also pointing out possible problems and

ways to address them in similar situations.

II. METHODS

This study uses a complete way to create and

assess a WebSocket server for online exam

monitoring. The method includes designing the

system, developing it, and testing it to guarantee

a strong and budget-friendly solution. The

113

A Horizontally Scalable WebSocket Architecture … (Eko Cahyo Nugroho)

system layout focuses mainly on being scalable

and reliable.

Figure 3. Designed Websocket Server Architecture

The main setup has several EC2 instances that

run WebSocket servers based on Node.js when

AutoScaling is Horizontally activated.

However, it only has 1 EC2 instance by default

when it is in low usage. These instances

connect using a Redis pub/sub system to send

messages in real time. Each instance uses the

Node.js cluster package to make better use of

CPU cores with a multithreading approach,

allowing for good management of multiple

connections at once. The overall system is on

AWS cloud infrastructure, and the client setup

includes two main types of users: examiners

(proctors) and students. These users connect

through WebSocket via AWS Route 53, which

handles DNS routing and has high availability

due to its failover functions. Incoming

connections are managed by a Network Load

Balancer, which helps distribute traffic evenly

across several EC2 instances in an Auto Scaling

group.

In the system, several t3a EC2 instances run

WebSocket servers using Node.js programmed

codes. These instances are part of an Auto

Scaling group that changes the number of active

servers based on real-time data like CPU usage,

network speed, and connection counts. This

ability to scale ensures that resources are used

efficiently while keeping performance steady

during different testing loads.

The data management part uses various AWS

services together. DynamoDB acts as the main

database for storing connection states and exam

session information, providing stable

performance even at scale. Redis, through AWS

ElastiCache, helps with real-time message

sharing between server instances using its

pub/sub feature. A major issue in a multi-

instance WebSocket server setup is the

challenge of communication between instances.

If a student on Instance A sends their exam

status, the system must make sure that the

proctor on Instance B can get those updates.

Without a proper message-sharing system,

messages would stay within their instances,

causing communication gaps that disrupt real-

time monitoring.

To fix this issue, the system uses Redis pub/sub

as a way to send messages between different

server instances. When a WebSocket server

instance gets a message from a student and does

not find the matching proctor in its list of

connections, it sends the message to a Redis

channel. All WebSocket server instances join

this channel to get messages from other

instances. When a message is received via

Redis, each instance looks to see if the target

proctor is connected and, if they are, sends the

message through the right WebSocket

connection id. For keeping examination data

and user info safe, Amazon RDS Aurora offers

strong relational database features in a specific

security group.

Figure 4. Basic WebSocket Message Structure

The student status update message, as shown in

Figure 4 is key to the communication system in

proctoring. Each message has important data

about the exam session, allowing real-time

tracking of student actions. The 'type' field,

labeled 'message_to_master,' means this

message needs to go to the master node for

routing between instances since the code

implements a multithreading in a single

instance. The 'clientConnectionSocketId' is a

114

JURNAL EMACS (Engineering, MAthematics and Computer Science) Vol.7 No.1 January 2025: 109-120

unique ID for the WebSocket connection,

crucial for routing messages and managing

connection states. The message details, found in

the 'message' object, include information on the

exam progress. The 'action' field, set to

'lmsQuizMonitoringStudent,' activates specific

routines for monitoring students.

This message format helps to track student

progress, activity, and exam timing. The

'user_status' field is important for proctoring, as

it allows for quick identification of suspicious

actions like switching tabs or exiting the exam

window. When status updates come in, the

system can instantly alert proctors, no matter

which server they are on, due to the Redis

pub/sub system.

Figure 5. Redis pub/sub prorgam codes

The Redis subscription system is important for

communication between different instances, as

seen in Figure 5. Each WebSocket server

instance connects to a shared Redis channel,

forming a network for broadcasting messages.

The code example shows how this subscription

works, with

'redisSubs.subscribe(channelName)' setting up

the subscription to a shared channel that all

instances use.

Figure 6. Websocket to Redis Flowchart

Figure 6 shows the message routing in the

WebSocket server setup for cross-instance

communication. When sending a message to a

client, the system checks if the client is

connected to the current instance. If the client is

in the instance's connection list, the message is

sent directly through the open WebSocket

connection, ensuring quick delivery in real

time.

But if the target client is not linked to the current

instance, the system starts the Redis pub/sub

mechanism. The message gets sent to a specific

Redis channel, allowing it to spread to all

WebSocket server instances when horizontal

autoscaling is activated and triggered to create

more than one EC2 instance. Each instance, as

a subscriber to the Redis channel, gets the

broadcast message and looks in its local

connection pool for the target client. If an

instance sees the target client in its connections,

it sends the message through the right

WebSocket connection ID. This routing system

makes sure the message is delivered no matter

which instance the target client is linked to.

The flow shows that the system can keep

smooth communication in real time between

different server instances. This method is very

important for exam proctoring, where updates

on student status need to get to proctors quickly,

no matter how the instances are spread out. This

setup builds a messaging network that

maintains the real-time features of WebSocket

communication and allows for growth with

several server instances triggered.

The security part is implemented in the

architecture. The system works in a Virtual

Private Cloud (VPC) for network safety and

isolation. Security groups manage the traffic

that goes in and out of EC2 instances and make

sure that instances can only communicate with

Elastic Load Balancer. Also, SSL/TLS

encryption protects all WebSocket connections

with no default port number set. This layered

approach to security works to keep data safe and

ensure communication stays intact during the

exam process.

The design of the architecture focuses on

performance, security, and saving costs. By

using auto-scaling and smart resource use, the

115

A Horizontally Scalable WebSocket Architecture … (Eko Cahyo Nugroho)

system can manage many connections at once

while keeping costs low. This method offers a

clear edge over old API Gateway systems,

especially for organizations that run many exam

sessions at the same time with huge traffic.

The research uses a comprehensive evaluation

method to check how well the new WebSocket

server works. The evaluation looks at three

main things: performance, scalability, and cost.

The performance testing focuses on checking

WebSocket time responses to see how steady

and reliable real-time communications are. This

involves running test clients that mimic student

exam activities by sending status updates every

5 seconds. The system logs the exact times

when each message is sent and received, which

helps calculate message delivery time patterns.

This method permits a thorough review of the

system's real-time communication performance

under different loads and server types.

To check how well the architecture can handle

more users, the method uses controlled load

tests that look at how the system scales up

automatically. The test setup relies on AWS

CloudWatch alarms set with certain CPU usage

limits to initiate scaling actions. During the

tests, the number of simultaneous connections

is slowly raised, while keeping an eye on many

performance indicators, such as how instances

are created and ended, response times during

scaling changes, and total resource use. This

approach offers information on how well the

system can keep performance steady while

responding to different load changes.

The cost analysis method sets up a way to

compare the economic efficiency of the

suggested solution with the previous API

Gateway setup. This includes keeping track of

operational data, such as how often each student

sends messages, total time connected, usage

patterns, and amounts of data transferred. The

approach involves gathering cost data from both

systems, allowing for a clear comparison of

costs for the same workload.

III. RESULTS AND DISCUSSION

The performance testing of the WebSocket

server setup was done with Apache JMeter,

simulating many students and proctors during

different examination sessions. The test cases

aimed to check how well messages were

delivered and how reliable communication was

between different instances.

Test Configuration:

• Test Duration: 30 minutes

• Concurrent Users: 1,000 simulated

students

• Message Frequency: 1 message every 5

seconds per student

• Server Configuration: 2 t3a.small EC2

instances

Here is the result of the stress test as shown in

Table 1 :

Table 1. Stress Test Result

Metric Average 90th% 95th% 99th%

Message

Latency

(ms)

45 78 92 115

Round-

trip Time

(ms)

89 125 148 187

CPU

Utilization

(%)

65 72 78 82

Memory

Usage (%)

58 67 73 79

WebSocket message latency and round-trip

time were measured using Apache JMeter and

the WebSocket Samplers plugin. To find

message latency, the timestamp_sent from the

testing WebSocket message was compared with

the server receipt time. Round-trip time was

calculated from the time the message was sent

until the acknowledgment was received back by

the test client. CPU and memory usage metrics

were gathered via AWS CloudWatch

Dashboard with detailed monitoring turned on

as shown in Figure 7.

116

JURNAL EMACS (Engineering, MAthematics and Computer Science) Vol.7 No.1 January 2025: 109-120

Figure 7. Cloudwatch Dashboard During Stress

Test

The CloudWatch metrics were combined for all

EC2 instances in the Auto Scaling group, giving

total resource use data during the test time. The

dashboard was set up to show real-time metrics

and past data, allowing a review of resource use

trends under different load situations.

The test results show steady performance in the

distributed system. The average message delay

is 45ms, which shows that message routing is

working well, even when messages had to go

through the Redis pub/sub system for delivery

between instances. The 95th percentile latency

of 92ms shows that most messages were sent in

good time for proctoring exams.

After the first performance tests, the

architecture was set up in a production setting

for a real online exam with 10,000 students.

This real-world use helped to understand how

well the system works and how it can grow

under real exam conditions.

Figure 8 shows that the system used resources

well, needing only 12 (twelve) t3a.small

instances for 10,000 users at once. This means

around 833 WebSocket connections per

instance, which is much better than earlier

estimates. The Auto Scaling group kept

resources evenly spread out, adding instances

automatically as more students joined when the

exam began based on the load at the time.

Figure 8. Real usage of Websocket EC2 instances

Figure 9. Incoming Request During Exam

Figure 9 shows the traffic pattern seen in the big

test run. The graph displays the number of

HTTP requests delivered to LMS system

requests the system handled in a 24-hour time

frame, with a notable spike during the exam

times. This data also describes how many users

are using the LMS during the exam.

The traffic pattern shows how the system

handles sudden jumps in connection requests,

like the spike graph increase at 06:00 when

students started logging into the exam system.

The setup managed this surge well, keeping

performance stable during the busiest times.

The graph indicates that the auto-scaling feature

responded effectively to the traffic, with the

system managing the initial spike smoothly and

maintaining steady performance throughout the

high-traffic times. The slow drop in traffic after

12:00 reflects the end of the exams, with the

system reducing resources as the load lightened.

This traffic pattern confirms the system's ability

to deal with quick scaling needs and long

periods of high load while using resources

efficiently.

This real-world use showed that the architecture

is effective, reliable, and scalable. It can

manage 10,000 users at the same time and

adaptively provide the EC2 t3a.small instances,

which have the same scalability and reliability

as serverless WebSocket API Gateway. The

findings prove that this architecture can

dependably handle large testing events while

keeping resource use and costs low.

117

A Horizontally Scalable WebSocket Architecture … (Eko Cahyo Nugroho)

Figure 10. Monitoring Dashboard on the Examiner

Side

Figure 10 shows the interface for monitoring

used by exam proctors in the real situation in the

exam room. It displays how the WebSocket

setup works for giving quick updates on student

status. The interface uses colors to quickly

indicate student activities:

• Green Icon: Indicates an "active"

status, showing that the student is

currently open and stays in the

examination interface

• Yellow Icon: Represents an "away"

status, triggered when students switch

browser tabs or minimize the

examination window

• Red Icon: Signals an "offline" status,

activated when the connection is lost or

the examination page is closed

The monitoring dashboard provides

comprehensive real-time information for each

student:

• The current question number being

attempted

• Total questions answered

• Time remaining in the examination

• Current score (upon submission)

• Count of any "away" status events

This real-time monitoring function works

because of the WebSocket's good message

routing system. Every time there is a status

change, a WebSocket message is sent right

away. This can happen through direct

communication or via Redis, making sure

proctors get updates quickly, usually within

milliseconds of what students do. While

running a big exam, the system handled about

2,000 status updates each second at peak times,

and the average delivery delay stayed below

100ms.

The speed of the interface shows that the

architecture can meet real-time monitoring

needs properly, giving proctors instant

awareness of student actions and possible exam

integrity concerns. This setup shows how the

WebSocket architecture is useful for keeping

exams fair through thorough real-time

monitoring.

Table 2. Cost Comparison 1 Month Period

API

Gateway

Cost ($)

EC2

Instance

Cost ($)

Total Cost

Include All

Used Services

Using

Websocket

API

Gateway

$1,345.74 $402.75 $8,352.35

Using

Horizontal

Scalling

EC2

Websocket

Server

$133.61 $695.77 $6,505.84

Table 2 shows a cost comparison between the

old API Gateway WebSocket setup and the new

EC2-based WebSocket server design that can

scale. The analysis looks at one month YoY of

use in the Learning Management System (LMS)

with the highest number of exam participants in

that month.

Previously, the LMS used serverless API

Gateway WebSocket API for monitoring exams

in real time. This setup gave some serverless

advantages but led to high expenses due to API

Gateway’s pricing structure that depended on

how many messages were sent and how long

connections lasted. Each month, the API

Gateway costs roughly hit $1,345.74, and extra

EC2 instances added $402.75 as the backend of

the LMS system, making the total monthly

infrastructure cost $8,352.35, which included

other AWS services.

The move to the EC2-based WebSocket server

setup that can scale horizontally showed clear

cost savings. Although more EC2 instances

were needed ($695.77) to manage the

WebSocket connections directly, the expenses

for the API Gateway dropped significantly to

118

JURNAL EMACS (Engineering, MAthematics and Computer Science) Vol.7 No.1 January 2025: 109-120

$133.61 (mostly for other API endpoints). This

resulted in a total monthly infrastructure cost of

$6,505.84, which is a 22.1% reduction in total

expenses.

Key cost implications:

• API Gateway costs reduced by 90.1%

($1,345.74 to $133.61)

• EC2 costs increased by 72.7% ($402.75

to $695.77)

• Net monthly savings: $1,846.51

(22.1% reduction)

This cost analysis shows that the new

architecture is cost-efficient and keeps similar

or better performance than the previous

serverless WebSocket API Gateway. The big

drop in API Gateway costs outweighs the higher

EC2 costs, proving that the change in

architecture boosts technical abilities and offers

notable cost savings worth the trade-off.

IV. CONCLUSION

This study shows a successful setup of a

WebSocket server that can scale horizontally

for online test supervision in real time. It points

out that the suggested setup handles technical

issues of monitoring a lot of users at once and

also considers the budget limits of schools.

The implementation results validate several key

achievements:

• First, the architecture managed many

connections at the same time,

supporting up to 10,000 participants in

an exam using just 12 (twelve)

t3a.small EC2 instances. The message

routing system based on Redis worked

well to keep communication happening

in real-time across different server

instances. Message delivery delays

stayed under 100ms, ensuring status

updates for exam monitoring were

quick.

• Second, the system showed good

scalability traits, changing resources as

needed while keeping performance

steady. The design's capacity to manage

quick increases in connections, proven

by the traffic analysis showing highs of

29,200 simultaneous requests, indicates

its dependability for large online exam

events.

• Third, the cost analysis shows notable

economic advantages, with the new

design reducing monthly infrastructure

costs by 22.1% when compared to the

old serverless WebSocket API

Gateway setup. This decrease in cost,

accomplished while keeping or

enhancing performance indicators,

proves that schools or educational

institutions can adopt strong real-time

proctoring solutions without facing

high operational costs.

The study helps the field by offering a practical

and low-cost method for supervising online

exams in real time on a large scale. The design

effectively meets both technical needs and

financial limits, which is useful for schools

using online exam systems. Future studies can

look better performance in term of data

reliability and throughput by comparing

between Redis and Kafka for distributing the

websocket messages within instances since

Kafka can provide more consistent data and

higher throughput compared to Redis.

REFERENCES

Alexeev, V. A., Domashnev, P. V., Lavrukhina,

T. V., & Nazarkin, O. A. (2019). The

Design Principles of Intelligent Load

Balancing for Scalable WebSocket

Services Used with Grid Computing.

Procedia Computer Science, 150, 61–68.

https://doi.org/10.1016/j.procs.2019.02.0

14

Alimudin, A., M, A. F., Sarinastiti, W.,

Yuwono, W., Winarno, I., Santoso, R.,

Murdaningtyas, C. D., Ilyas, M. I., &

Muktasib, M. R. (2024). Implementation

of Automatic Proctoring in Online Exam

System. 2024 International Electronics

Symposium (IES), 698–702.

https://doi.org/10.1109/IES63037.2024.

10665805

Arvindhan, M., & Anand, A. (2019). Scheming

an Proficient Auto Scaling Technique for

Minimizing Response Time in Load

Balancing on Amazon AWS Cloud.

119

A Horizontally Scalable WebSocket Architecture … (Eko Cahyo Nugroho)

SSRN Electronic Journal.

https://doi.org/10.2139/ssrn.3390801

Castaño, M., Noeller, C., & Sharma, R. (2021).

Implementing remotely proctored testing

in nursing education. Teaching and

Learning in Nursing, 16(2), 156–161.

https://doi.org/10.1016/j.teln.2020.10.00

8

Eka Putra, F. P., Muslim, F., Hasanah, N.,

Holipah, Paradina, R., & Alim, R.

(2024). Analisis Komparasi Protokol

Websocket dan MQTT Dalam Proses

Push Notification. Jurnal Sistim

Informasi Dan Teknologi, 63–72.

https://doi.org/10.60083/jsisfotek.v5i4.3

25

Friendly, Sembiring, A. P., Faza, S.,

Lukcyhasnita, A., & Destiadi, R. (2023).

Design and Implementation of IOT

Connection With Websocket Using PHP.

International Journal of Research in

Vocational Studies (IJRVOCAS), 2(4),

94–98.

https://doi.org/10.53893/ijrvocas.v2i4.17

3

Han, S., Nikou, S., & Yilma Ayele, W. (2024).

Digital proctoring in higher education: a

systematic literature review.

International Journal of Educational

Management, 38(1), 265–285.

https://doi.org/10.1108/IJEM-12-2022-

0522

Juansen, M., & Simatupang, S. (2023). Integrasi

Mesin Absensi dan Pusher Notification

pada Sistem Informasi Akademik

Sekolah Untuk Monitoring Absensi

Real-Time. Journal of Computer System

and Informatics (JoSYC), 4(4), 1028–

1035.

https://doi.org/10.47065/josyc.v4i4.3840

Khoda Parast, F., Sindhav, C., Nikam, S., Izadi

Yekta, H., Kent, K. B., & Hakak, S.

(2022). Cloud computing security: A

survey of service-based models.

Computers & Security, 114, 102580.

https://doi.org/10.1016/j.cose.2021.1025

80

Lazidis, A., Tsakos, K., & Petrakis, E. G. M.

(2022). Publish–Subscribe approaches

for the IoT and the cloud: Functional and

performance evaluation of open-source

systems. Internet of Things, 19, 100538.

https://doi.org/10.1016/j.iot.2022.10053

8

Maharjan, R., Chy, M. S. H., Arju, M. A., &

Cerny, T. (2023). Benchmarking

Message Queues. Telecom, 4(2), 298–

312.

https://doi.org/10.3390/telecom4020018

Maulana, A. R., & Rahmatulloh, A. (2019).

Websocket untuk Optimasi Kecepatan

Data Transfer pada Real Time Chatting.

Innovation in Research of Informatics

(INNOVATICS), 1(1).

https://doi.org/10.37058/innovatics.v1i1.

667

Nguyen, X. H., Le-Pham, V. M., Than, T. T., &

Nguyen, M. S. (2022). PROCTORING

ONLINE EXAM USING IOT

TECHNOLOGY. 2022 9th NAFOSTED

Conference on Information and

Computer Science (NICS), 7–12.

https://doi.org/10.1109/NICS56915.202

2.10013409

Nurpeisova, A., Shaushenova, A., Mutalova, Z.,

Ongarbayeva, M., Niyazbekova, S.,

Bekenova, A., Zhumaliyeva, L., &

Zhumasseitova, S. (2023). Research on

the Development of a Proctoring System

for Conducting Online Exams in

Kazakhstan. Computation, 11(6), 120.

https://doi.org/10.3390/computation110

60120

Palumbo, F., Aceto, G., Botta, A., Ciuonzo, D.,

Persico, V., & Pescapé, A. (2021).

Characterization and analysis of cloud-

to-user latency: The case of Azure and

AWS. Computer Networks, 184, 107693.

https://doi.org/10.1016/j.comnet.2020.1

07693

Samha, A. K. (2024). Strategies for efficient

resource management in federated cloud

environments supporting Infrastructure

as a Service (IaaS). Journal of

Engineering Research, 12(2), 101–114.

https://doi.org/10.1016/j.jer.2023.10.031

Sarat Dyuthi, K. S. (2024). Configuring Real-

Time Event Processing of Api Gateway

with Aws and Websocket Api’s. Journal

of Informatics Education and Research,

4(3).

https://doi.org/10.52783/jier.v4i3.1711

Schoenmakers, B., & Wens, J. (2021).

Efficiency, Usability, and Outcomes of

Proctored Next-Level Exams for

120

JURNAL EMACS (Engineering, MAthematics and Computer Science) Vol.7 No.1 January 2025: 109-120

Proficiency Testing in Primary Care

Education: Observational Study. JMIR

Formative Research, 5(8), e23834.

https://doi.org/10.2196/23834

Smith, C. D., Atawala, N., Klatt, C. A., &

Klatt, E. C. (2022). A review of web-

based application of online learning

in pathology and laboratory medicine.

Journal of Pathology Informatics, 13,

100132.

https://doi.org/10.1016/j.jpi.2022.100

132

Soewito, B., Christian, Gunawan, F. E.,

Diana, & Kusuma, I. G. P. (2019).

Websocket to Support Real Time

Smart Home Applications. Procedia

Computer Science, 157, 560–566.

https://doi.org/10.1016/j.procs.2019.

09.014

Tanaem, P. F., David Manuputty, A., &

Wijaya, A. F. (2022). STARS:

Websocket Design and

Implementation. 2022 International

Seminar on Application for

Technology of Information and

Communication (ISemantic), 167–

171.

https://doi.org/10.1109/iSemantic559

62.2022.9920451

Taniar, D., Barthelemy, J., & Cheng, L.

(2021). Research on Real-time Data

Transmission between IoT Gateway

and Cloud Platform based on Two-

way Communication Technology.

International Journal of Smartcare

Home, 1(1), 61–74.

https://doi.org/10.21742/26531941.1.

1.06
Wei Jiang, Liu-Gen Xu, Hai-Bo Hu, Yue Ma

(2019). Improvement Design for

Distributed Real-Time Stream

Processing Systems. Journal of

Electronic Science and Technology, 3-

12. 10.11989/JEST.1674-

862X.80904011

Amazon Web Services. (n.d.). Amazon API

Gateway pricing | API management |

Amazon Web Services.

https://aws.amazon.com/api-

gateway/pricing/

