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Abstract: After the release of Bluetooth Low Energy (BLE), 

people have been trying to use Bluetooth as an alternative source 

to solve indoor positioning. Unfortunately, due to the nature of 

Bluetooth about proximity, the propagated signal is very 

fluctuating. This decreases the accuracy considerably and has 

become one of the main problems in using Bluetooth. To combat 

the signal fluctuations, we propose a fingerprinting-based concept 

of using received signal strength (RSS) frequency distribution 

values as the data in the radio map, which is termed Frequency 

Distribution Radio Map (FDRM). We also propose a probabilistic 

fingerprinting-based algorithm utilizing FDRM using Gaussian 

Mixture Model (GMM) as the probability distribution function 

(PDF). In the offline phase, we compare 2 methods: k-Means 

only, and k-Means with Expectation-Maximization (EM); to learn 

the FDRM. This resulting a probability distribution function 

(PDF) of the RSS in each reference points for each BLEs. In the 

online phase, k-Nearest Neighbour (KNN) and weighted average 

are used to estimate the receiver’s location. The proposed method 

is validated over 3 different datasets taken from a 4 m x 6 m 

classroom equipped with chairs and tables. The experiment shows 

that the proposed fingerprint and model are better in capturing 

the environment, including the signal fluctuation. By using only 

k-Means in obtaining the GMM, it achieved mean error of 98.18 

cm and standard deviation of 56.11 cm. By adding EM, there will 

be a trade-off between mean error with better standard deviation 

and lower computing time. It achieved standard deviation of 47.99 

cm and mean error of 112.24 cm. 
  
Keywords: Bluetooth Low Energy; Frequency Distribution Radio 

Map; Probabilistic Fingerprinting; Gaussian Mixture Model; k-

Means; Expectation-Maximization 

I. INTRODUCTION 

Global Positioning System (GPS) has an important role 

in nowadays life, providing location-based service. 

However, GPS depends on GPS signal which can be 

weakened by obstacles such as building blocks. Therefore, 

GPS is unreliable when the receiver is inside a building. To 

address this problem, researchers have been working on an 

Indoor Positioning System (IPS). A reliable IPS has been 

very crucial these days in a lot of Internet of Things (IoT) 

projects and smart home projects (Kim, Jeong, & Park, 2013) 

(Ke, Wu, Chan, & Lu, 2018). IPS also has an important role 

in some indoor public places. Other than indoor positioning 

or navigation (Ramani & Tank., 2014) (Ruggiero, Charith, 

Song, & Lucia, 2018) (U.S. Patent No. 8,866,673, 2014) 

(Yang, Wang, & Zhang, 2015), IPS is required for a more 

sophisticated management system such as surveillance in 

hospital (Fisher, 2006) and vehicle tracking in construction 

sites under a tunnel (Woo, et al., 2011). 

Scientists have been working on a wireless IPS by using 

various sources such as infrared (Lee, 2004), ultrasound 

(Medina, Segura, & Torre, 2013), audible sound (Mandal, et 

al., 2005), sensor (Haque, 2014), and radio frequency (RF). 

However, object obstructions and signal reflections will 

affect the received signal strength (RSS). A more 

sophisticated estimation algorithm is required to handle this 

problem. Generally, fingerprinting-based algorithm will 

provide a higher accuracy as it represents the environment. 

The environment is captured in the offline phase by picking 

RSS vector in several reference points that is called radio 

map. This radio map will be used as a reference to estimate 

the receiver’s location in the online phase. The disadvantage 

of using fingerprinting-based algorithm is the offline phase 

that is tedious and time-consuming as the size of the room 

increases (Hossain & Soh, 2015). 

RF signals such as Wi-Fi, RFID (Papapostolou & 

Chaouchi, 2011), and Bluetooth has become the most reliable 

solution due to its low-cost and reasonable accuracy. Wi-Fi 

has become the most mature research topic amongst other RF 

signals, exploiting the channel state information (CSI) on 

advanced Wi-Fi network interface card (NIC) (Wang, Gao, 

& Mao, CSI Phase Fingerprinting for Indoor Localization, 

2017) (Wang, Gao, Mao, & Pandey, DeepFi: Deep Learning 

for Indoor Fingerprinting Using Channel State Information, 

2015). With a high accuracy, researchers have started to work 

on IPS with human intervention (Yang, Wu, & Liu, 2012). 

However, Bluetooth using Bluetooth Lower Energy (BLE) 

provides lower energy consumption, lower network latency, 

cheaper price, and ideal for single-hop communication 

(Gomez, Oller, & Paradells, 2012). It is possible to use an 

array of BLEs to cover larger area while keeping the 

accuracy high in a reasonable cost. 

The downside of using Bluetooth is that the signals 

fluctuates more than other RF signals. This is a big problem 

in using Bluetooth as the RSS in the online phase might differ 

by a large margin compared to the radio map. With the radio 

map is less related to the RSS, the algorithm is also less 

accurate to estimate the receiver’s location. 

Typically, a single RSS vectors in radio map is obtained 

by averaging several RSS values over time to increase its 
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reliability. However, in our case, the average value barely 

represents the signal propagation as presented in Fig 1. The 

RSS value varies in range of ±6 dBm from its average. Later 

we suspect that the frequency distribution of the RSS values 

is more informative than its average value. 

This paper is a proof-of-concept on using RSS frequency 

distribution values that we called Frequency Distribution 

Radio Map (FDRM), instead of RSS average values. We also 

propose a probabilistic fingerprinting FDRM-based method  

 
Fig. 1. RSS does not follow the propagation loss model due to fluctuation. 

 

using Gaussian Mixture Model (GMM) as the probability 

distribution function (PDF). The experiment was held in a 4 

m x 6 m room using 4 BLEs. Three different datasets are used 

to evaluate our proposed method. 

There are several positioning algorithms, which are 

usually classified into 2 types: fingerprinting and non-

fingerprinting. Fingerprinting uses reference points collected 

in the offline phase, and the data will be used to estimate the 

location in the online phase. Non-fingerprinting algorithm 

does not use any reference points; therefore, it needs other 

data to estimate. Measurement such as angle of arrival (AoA) 

(Wong, Klukas, & Messier, 2008), time of arrival (ToA), 

time difference of arrival (TDoA) (Han, Lu, & Lan, 2010) 

and RSS can be use instead of reference points. Therefore, 

non-fingerprinting algorithm does not require offline phase, 

which is an advantage by itself. Unfortunately, Bluetooth 

provides less precision of time synchronization, and it is hard 

to measure angle (Wang, Yang, Zhao, Liu, & Cuthbert, 

2013). Typically, non-fingerprinting method on BLE will 

rely on RSS. 

Since there is only online phase, estimation should be 

done by using only RSS vectors. The only way to estimate 

location is to convert RSS into distance using some kind of 

propagation-loss model. The distance between location and 

each BLE can be used to find the location by geometrical 

algorithm such as Trilateration/Triangulation (Paterna, 

Auge, Aspas, & Bullones, 2017), Heron-Bilateration 

(Chung-Hao Huang, 2015) and Least Square (Li, 2014) 

algorithm. However, the accuracy of the estimation will 

heavily rely on the propagation-loss model. Since Bluetooth 

has a lot of fluctuation, therefore there will be a lot of false 

distance value that will lower the accuracy. Researchers has 

been trying to improve the propagation-loss model 

specifically for BLE (Onofre, Silvestre, Pimentão, & Sousa, 

2016). However, different environment such as object 

obstructions will also resulting a different propagation 

model. Some research tried to use machine learning to model 

the propagation loss (Chandel, Ahmed, Arora, & Ghose, 

2016). 

In 2000, Bahl and Padmanabhas (Bahl & Padmanabhan, 

2000) as they recorded radio signals that will be used to 

validate and estimate the location. Later this method is 

termed Fingerprinting, with the recorded radio signals 

termed as radio map. Fingerprinting consists of 2 steps: 

offline phase to collect the radio map from reference points, 

and online phase to estimate the asked location. Generally 

fingerprinting has a better accuracy because the reference 

points will represent the environment. There are 2 types of 

fingerprinting algorithm: deterministic fingerprinting and 

probabilistic fingerprinting. One method in deterministic 

fingerprinting is to use KNN with certain RSS distance 

metric as a degree of similarity between RSS vectors. Yu-Chi 

and Pei-Chun in their research shows that Chebyshev 

distance provides higher accuracy compared to Euclidean 

Distance (Pu & You, 2018). A method named Enhanced 

weighted KNN on Wi-Fi fingerprint was proposed (Shin, 

Lee, Lee, & Kim, 2012) with the ability to dynamically 

change the k value to enhance the accuracy even further. 

Probabilistic fingerprinting method use a posteriori 

probability of location, given the RSS vector received in the 

online phase to estimate in the online phase. A posteriori 

probability functions of RSS vector given location of 

reference point are also defined in the offline phase. These 2 

probabilities are related to each other through Bayes’ 

Theorem. Typically, researchers are working on the different 

probability function used in the reference points. Xuyu et al. 

proposed DeepFi method, using Autoencoder and Radial 

Basis Function (RBF) to calculate the probability of input 

given location (Wang, Gao, Mao, & Pandey, DeepFi: Deep 

Learning for Indoor Fingerprinting Using Channel State 

Information, 2015), but they used Wi-Fi CSI instead of the 

regular RSS. Their method achieved mean error of 94.25 cm 

which one of the best algorithms in IPS using CSI.  

A similar work to our method has been researched before. 

Alfakih used GMM to approximate the PDF of RSS in Wi-

Fi fingerprints (Alfakih, Keche, & Benoudnine, 2015) 

resulting an improvement in the overall performance. 

Abhishek et al. also mentioned in their research that GMM 

using EM will have less intensive training process compared 

to other fingerprinting method (Goswami, Ortiz, & Das, 

2011). GMM can also handle time varying issues since the 

PDF is able to learn the environment including the time 

variation.  

Other than a positioning algorithm, GMM can also be 

used as a signal strength prediction in a wireless network 

(Prashant, M, Shreyas, Chaithanya, & Kuttaiah, 2009). 

Therefore, when fluctuations are happening or the device is 

disconnected from the network, the device can use the 

predicted signal strength instead of the RSS. The signal 

strength can be predicted from the RSS history using Markov 
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Chain. This might increase the accuracy of a tracking 

algorithm, however the possibility of using GMM signal 

strength prediction on BLE has not yet been explored. 

 
Fig. 2. RSS Frequency Distribution is more informative 

compared to the mean value. 

II. METHODS 

In theory, reference points should be able to capture the 

environment, and this includes the object obstructions and 

signal fluctuations. However, as mentioned in Fig 1, using 

mean RSS as the RSS vectors barely represent the 

propagation model. By looking at Fig 2, RSS frequency 

distribution is more informative and representative than a 

single mean value. Therefore, we propose a method utilizing 

the frequency distribution as the RSS vectors. 

Suppose that there are 𝑁 reference points and 𝑀 BLEs 

numbered from 1 to 𝑀. Define 𝑅𝑃 as the reference point and 

𝑇𝑃 as the testing point that we want to estimate. The RSS 

vector in the reference point is called 𝑟 and the RSS vector 

in the testing point is called 𝑡. The vector 𝑟 consists of 𝑀 

different RSS frequency distribution taken from each BLEs. 

Meanwhile the vector 𝑡 consists of 𝑀 numbers representing 
the RSS value received at the online phase. 

 
Fig. 3. Flowchart of the proposed algorithm. 

 

A. Offline Phase: Gaussian Mixture Model 

The posterior probability of receiving certain RSS value 

from the 𝑖-th BLE given its location is represented as the PDF 

of GMM. The GMM is calculated as a sum of several 

Gaussian PDFs that is weighted by its mixture coefficient. 

Suppose that there are 𝑔 different Gaussians numbered from 

1 to 𝑔, therefore 

𝑃(𝑟𝑠𝑠𝑖|𝑅𝑃) = ∑ 𝑤𝑗  𝐺(𝑟𝑠𝑠𝑖|𝜇𝑗 , 𝜎𝑗
2)

𝑔
𝑗=1 ;  (1) 

The GMM will vary based 4 parameters: the number of 

Gaussians, the centre of Gaussians, the covariance of 

Gaussians, and the mixture coefficients. These values can be 

obtained through 3 steps: initialization, k-Means, and 

Expectation-Maximization (EM).  

First, the GMM parameters will be initialized based on 

the frequency distribution obtained from the calibration 

process. The number of Gaussians will be the number of 

distinct RSS values, with the centre being the RSS value 

itself and the covariance is by default set to 1. The mixture 

coefficient will be set to the ratio between its frequency and 

the total frequency. These initial parameters themselves are 

already forming a GMM and ready to be tested. However, 

the next step is optional, with the intention to improve the 

result even further.  

The next step is k-Means that will update the GMM 

parameters except the covariances. First, we can choose 𝑘 

random Gaussians as long as 𝑘 ≤ 𝑔, and this will be the 

initial value for our k-Means. This step is completed after 

iterating the k-Means until it converges. The result of this 

step is 𝑘 Gaussians with new center, with the mixture 

coefficient being sum of frequencies that is in the same 

cluster with the center, divided by the total frequency. 

Since the result of k-Means is also a GMM, the final step 

which is EM is also optional. By using EM, we are starting 

to change the covariances of the Gaussians. This algorithm 

also might change the number of Gaussians, since there is a 

possibility that the mixture coefficient will converge to 0. 

When the mixture coefficient is 0, we can neglect that 

Gaussian.  

First, the initial value for the EM is the parameters gained 

from k-Means, with the initial value of the covariance. Every 

iteration consists of 2 steps: E-step and M-step. In E-step, the 

likelihood of every data is calculated based on the current 

parameter. Meanwhile in M-step, the parameter will be 

updated in order to maximize the likelihood function. By 

iterating EM until it converges, we finally get the final 

parameters for our GMM, which represents the maximum 

likelihood of the data. 

B. Online Phase: K-Nearest Neighbour & Weighted Sum 

In probabilistic fingerprinting, posterior probability is 

assigned to each RPs as the probability of them becoming the 

estimation given RSS vector received in that point. By 

assuming each BLEs are conditionally independent between 

each other, the posterior probability of a RP is described as 

follows: 

𝑃(𝑅𝑃|𝑡) = ∏ 𝑃(𝑅𝑃|𝑡𝑖)
𝑚
𝑖=1  (2) 

with 𝑃(𝐸𝑃 = 𝑅𝑃|𝑡𝑖) is the return value by inserting the 

value of 𝑡𝑅𝑆𝑆𝑖 to the PDF at point 𝑅𝑃 that is taken from the 

𝑖-th BLE. Then we can use KNN to choose 𝑘 RPs with 

highest probability returned by the PDF. Suppose that the 𝑘 

RPs is numbered from 1 to 𝑘, then using Bayes’ theorem we 

can calculate the value of: 

𝑃(𝑅𝑃|𝑡𝑖) =
𝑃(𝑅𝑃)𝑃(𝑡𝑖|𝑅𝑃)

∑ 𝑃(𝑅𝑃𝑗)𝑃(𝑡𝑗|𝑅𝑃𝑗)𝑘
𝑗=1

 (3) 

with 𝑃(𝑡𝑖|𝑅𝑃) being a Gaussian Mixture Model PDF 

given location 𝑅𝑃 using the 𝑖-th BLE. By assuming an equal 

distribution of probability between each RPs, the value of 

𝑃(𝑅𝑃|𝑡𝑖) can be simplified into: 

𝑃(𝑅𝑃|𝑡𝑖) =
𝑃(𝑡𝑖|𝑅𝑃)

∑ 𝑃(𝑡𝑖|𝑅𝑃𝑗)𝑘
𝑗=1

 (4) 

This a posteriori probability can be used as the weight of 

the 𝑘 chosen RPs in weighted average to calculate the 

estimated location. 

𝑇𝑃⃗⃗⃗⃗⃗⃗ = ∑ 𝑃(𝑅𝑃𝑖|𝑘
𝑖=1 𝑡)𝑅𝑃⃗⃗⃗⃗⃗⃗

𝑖  ;  ∑ 𝑃(𝑅𝑃𝑖|
𝑘
𝑖=1 𝑡) = 1 (5) 

In our method, KNN has the role of eliminating RPs that 

are unlikely to become the estimation point. If such points 

are included in the weighted average, it will increase the 
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distance error. If the 𝑘 value in KNN is too small, then it will 

eliminate too much information, resulting an unreliable 

estimation. If the 𝑘 value in KNN is too high, then the KNN 

will barely give any impact to the overall estimation. 

Therefore the 𝑘 value is included as the parameter explored 

in this experiment. 

III. RESULTS AND DISCUSSION 

 

A. Experimental Design 

In this experiment, we tested 2 different method to 

construct GMM: k-Means only, and k-Means with EM. As a 

benchmark, we use KNN with Chebyshev Distance as the 

distance metric (Pu & You, 2018). The experiment was 

conducted in a 4 m x 6 m classroom equipped with chairs and 

tables. We also prepared 3 datasets gathered from the same 

room, with different configuration of RPs and TPs as shown 

in Fig 4. The data collection process follows the 

configuration in dataset 2, as the other datasets can be 

obtained from dataset 2. In total, there will be 4 BLEs used 

in this experiment, each has the configuration of TX Power 

3 with broadcast interval 500 ms. The BLE signal was 

received through a smartphone at a height of 125 cm, using 

our BLE RSS Application that was created in Android 

Studio.  

 

 

 
Fig. 4. RPs (red dot) and TPs (blue cross) from dataset 1 

(a), 2 (b), and 3 (c). 

 

For each RPs, 100 signal data will be received from each 

BLE. These data will be converted into frequency 

distribution for the FDRM. Meanwhile for each TPs, 10 

signal data will be received from each BLE. However, since 

the RSS vector for the TP only contains RSS values, 

therefore we took the mean value from the 10 RSS values.  

Between 3 datasets, our original dataset was dataset 2. 

Each RP forms a grid with the distance between adjacent 

points is 50 cm. In total, there are 77 RPs. The TPs are ±10 

cm from the x-value and y-value of every RP. Therefore, 

each RPs will have 4 TPs surrounding it, and in total there 

are 308 TPs. 

However, the dataset that is used in some research is 

similar to the dataset 1. Therefore, we included this dataset 

as a benchmark. The distance between adjacent RPs is 100 

cm, and in total there are 24 RPs. The TPs are the middle of 

every grid, resulting a total of 15 TPs. Notice that both RPs 

and TPs in dataset 1 are subset of the RPs in dataset 2. 

Therefore, there is no additional data collection to gather this 

dataset. Dataset 1 should be easier to estimate compared to 

dataset 2, since the formation is much simpler. 

Finally, dataset 3 is the combination of dataset 1 and 2. 

The RPs used are the 24 points from dataset 1, meanwhile 

the TPs used are the 308 points from dataset 2. The reason 

why this dataset is used is to evaluate the relation between 

the number of RPs with the overall performance. Having 

more RPs usually resulting in better accuracy. However, 

since the calibration process is time-consuming, it is better to 

have an enough RPs while maintaining similar performance. 

Notice that there are points in dataset 2 and 3 that are 

outside the reach of the RPs. Since the sum of weights is 

always 1, the resulting estimation will be always towards 

some RPs. Therefore, every point that the x value is not 

between 50 and 550, or the y value is not between 50 and 

350, is unreachable by using weighted average no matter 

what method is used. This is one of the disadvantages on 

using weighted average in fingerprinting-based algorithm as 

it can only estimates location between RPs. However, our 

dataset is intended to contain such points since this case will 

happen in real scenario. Another solution is to have a better 

configuration of RPs. However, we also want to test out if 

the proposed method can minimize the distance error. 
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Table- I. Summary of differences between 3 datasets. 
Dataset #RP #Samplings 

per RP 

RP Grid 

Size (cm) 

#TP #Samplings 

per TP 

1 24 100 100 15 100 

2 77 100 50 308 10 

3 24 100 100 308 10 

 

 In order to achieve the best result from each method, all 

possible parameters from each method were explored. The 

parameter for KNN and k-means is the 𝑘 value, meanwhile 

EM relies on the initial value taken from the k-means. We 

also evaluate the performance from each iteration of EM to 

understand what impact EM will give to the GMM. All 

algorithm used in this experiment was implemented and 

tested in C++11. The indicators used to evaluate performance 

of the methods are mean distance error and standard 

deviation. The distance error between the actual location and 

the estimation is calculated using Euclidean Distance.  

In addition, there is a small chance in probabilistic 

fingerprinting of getting 0 probability from each RPs, 

resulting estimation cannot be calculated. In this case, the 

estimation is considered failed and the distance error will be 

set to the maximum distance between TPs to compensate this 

issue. In dataset 1, the maximum distance between TPs is 

447.21 cm. Meanwhile in dataset 2 and 3, the maximum 

distance between TPs is 610.57 cm. 

 
Fig. 5. Behaviour of K-Means and K-Means + EM on 

the frequency distribution. 

 
Fig. 6. The effect of EM towards the positioning result over 

its iteration. 

 
Fig. 7. The effect of K-Means towards the positioning result 

over the value of k. 

 

B. Experimental Result 

In each RPs, the number of distinct RSS values will vary 

from 6 to 19 values. When the frequency is distributed 

equally, this will give a bad PDF that might lower the 

accuracy. In Fig 5, the left chart shows a PDF that is 

distributed quite equally. The GMM is also less 

representative compared to the right chart. The reason is 

because corner points are far from BLEs, therefore the RSS 

is less accurate than points in the middle of the room. By 

applying EM, it changes the PDF to a simpler PDF with 

smaller value. Meanwhile in a better PDF, applying EM 

reduces the covariance of the Gaussians. Furthermore, the 

GMM from k-Means seems fitter to the frequency 

distribution compared to the k-Means + EM. This can be 

caused by either the GMM from k-Means is still overfit, or 

the GMM from k-Means + EM is already underfit. 

Even though EM is not mandatory, Fig 7 shows us the role 

of EM in this method by comparing the estimation over the 

iteration. At the beginning, the mean error is very low, and 

the standard deviation is acceptable. Then, in the first couple 

iteration, the GMM performs worse than the initial value. 

Then, the mean error is started to converge, meanwhile the 

standard deviation keeps getting lower and lower. Finally, 

the GMM is started to converge between 100-200 iteration 

(157 iteration for Fig 7), resulting the lowest standard 

deviation. This concludes that it is necessary to iterate EM 

until the GMM converges to achieve best result. 

In our experiment, the maximum number of distinct RSS 

values amongst all RPs is 19. When 𝑘 = 1, the GMM is 

already converged, therefore the EM immediately stops, 

resulting the same GMM from k-Means. When 𝑘 = 𝑎𝑙𝑙, all 

the distinct RSS values are treated as different Gaussians, 

therefore the k-Means immediately stops, resulting a GMM 

from the initial FDRM.  

 

Table- II. Statistical result from the best performance of 

each method in 3 datasets. 
Indicator No GMM K-Means K-Means + 

EM 

Dataset 1 

Mean error (cm) 125.84 98.18 112.24 

Std. dev. (cm) 74.92 56.11 47.99 

Min error (cm) 14.71 12.040 10.79 

Max error (cm) 284.97 199.39 180.81 

90th percentile (cm) 197.56 161.60 165.65 

Error < 100 cm (%) 40 53.33 46.67 

Error > 200cm (%) 13.33 0 0 

Dataset 2 

Mean error (cm) 141.23 125.83 141.06 

Std. dev. (cm) 71.26 86.64 68.57 

Min error (cm) 11.20 2.58 8.75 

Max error (cm) 450.92 3 points not 

found 

400.25 

90th percentile (cm) 229.09 211.01 230.94 

Error < 100 cm (%) 30.84 43.51 30.19 

Error > 200cm (%) 20.45 12.99 17.53 

Dataset 3 

Mean error (cm) 148.84 136.23 140.06 

Std. dev. (cm) 70.35 105.79 69.13 

Min error (cm) 18.60 6.108 11.48 

Max error (cm) 443.68 7 points not 

found 

366.13 

90th percentile (cm) 244.25 244.11 232.75 

Error < 100 cm (%) 27.92 42.86 29.87 

Error > 200cm (%) 23.70 16.56 18.51 

 



 
 

66 JURNAL EMACS (Engineering, MAthematics and Computer Science) Vol.7 No.1 January 2025: 61-68 

 

The lowest mean error that k-Means achieved is 125.83 

cm when 𝑘 = 9. When the value of k is too small, the GMM 

will underfit. The same thing happens when the value of 𝑘 is 

too big, the GMM will overfit. Therefore when 𝑘 = 9, it is 

enough to preserve the best GMM without removing too 

much Gaussians. However, this does not happen with the 

result from EM. The mean error seems unstable with small 

value of 𝑘, but at the same time approaching worse mean 

error as the value of 𝑘 increases. For all values of 𝑘, while 

the mean error of k-Means is consistently lower than EM, the 

standard deviation is consistently higher. This proves our 

hypothesis that the role of EM in this method is to achieve 

lower standard deviation. The lowest standard deviation 

achieved by EM is 61.59 cm when 𝑘 = 6. Unfortunately, 

when 𝑘 = 6, the mean error of EM is 151.90 cm which is 

considerably bad. Other value of k that has low standard 

deviation with reasonable mean error is 𝑘 = 3. The mean 

error is 141.06 cm, while the standard deviation is 68.57 cm. 

Finally, by comparing the result between each method in 

our 3 datasets, this experiment proves our concept in using 

FDRM instead of the regular radio map. Our proposed 

method also outperforms the regular KNN in all datasets. 

This concludes that GMM captures the environment better, 

therefore resulting a better estimation. The method using

 
 

Fig 8.  Cumulative Distribution Function (CDF) of all methods between dataset 1 (a), 2 (b), and (c). 

 

only k-Means in constructing the GMM serves the overall 

best result between 3 methods. Our hypothesis is shown to 

be correct consistently through all datasets. EM holds the 

lowest standard deviation amongst 3 method, while holding 

better accuracy than the regular KNN at the same time. 

 

Table- III. Parameters used between methods that achieved 

the result in Table III. 
Dataset No GMM K-Means K-Means + EM 

KNN K-Means KNN K-Means KNN 

1 6 4 6 8 7 

2 14 9 15 3 14 

3 5 12 11 8 5 

 

By comparing the result in dataset 2 and dataset 3, we 

also found out that k-Means GMM will perform better when 

using more RPs. Even though the performance can be 

increased by using more RPs, it will require more work in the 

calibration process. The number of RPs in dataset 2 is more 

than 3 times the number of RPs in dataset 3, however the 

mean error is only 11 cm better. Therefore, less RPs can be 

used if the system does not require a precise estimation. 

Contrary to the k-Means GMM and the benchmark 

method, k-Means + EM performs slightly better with less 

RPs. This is beyond our expectation since generally 

fingerprinting-based method will perform better with more 

RPs. This contradicts Abhishek’s research on WiGEM that 

the accuracy of GMM will be better as the finer the grid size 

is (Goswami, Ortiz, & Das, 2011). The maximum distance 

error in dataset 3 is significantly lower compared to dataset 

2, and this lower the mean error by 1.00 cm. Also, the mean 

error is only 3.82 cm higher compared to k-Means GMM, but 

the standard deviation is 36.66 cm lower. This concludes that 

k-Means + EM is preferable if there is a smaller number of 

RPs. 

By analysing Fig 8, k-Means GMM always performs 

better at 80% of the data compared to the other methods. 

However, the remaining 20% are quite bad, and this lowers 

the overall performance of the method. It turns out that 

7.14% in dataset 2 and 8.12% in dataset 3 are caused by the 

points outside the convex hull of the RPs, which is the main 

limitation of weighted sum. This shows that k-Means GMM 

is worse in reducing the distance error on such points. 

Meanwhile k-Means + EM GMM performs consistently 

better compared to No GMM, especially in dataset 2 and 

dataset 3. 

One of the disadvantages of using our method has been 

mentioned previously, that there is a small chance of getting 

no estimation due to having 0 probability in each RPs. By 

looking at the k-Means only method, there are: 0 points not 

found in dataset 1, 3 points not found in dataset 2, and 7 

points not found in dataset 3. This issue will happen if the 

GMM has not captured all possibilities in the environment. 

As result, it causes the method using k-Means GMM has the 

highest standard deviation compared to the other method, 

even though it provides the lowest mean error. 

By analysing Table 2., there are several solutions to 

handle this issue: 

• Better calibration process. This can be done by increasing 

the number of RPs, as shown from the result from dataset 

2 and dataset 3 in Table 2. More signal sampling can be 

done to make sure the GMM has captured the whole 

environment. Unfortunately, fixing the issue from this 

step is time consuming. 

• Better GMM. As shown in Table 2, GMM constructed by 

k-Means and EM does not have this issue throughout all 
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3 datasets. However, since the mean error from this 

method is higher, this is not necessarily the best solution 

either. 

In summary, both k-Means GMM and k-Means + EM 

GMM have shown an overall improvement of mean error and 

standard deviation compared to the benchmark method, 

which is the KNN with Chebyshev distance as the distance 

metric. Unfortunately, due to some fail estimation in dataset 

2 and dataset 3, the k-Means GMM has the worst standard 

deviation. Therefore, 

• Use k-Means if: the system requires the best performance 

overall and have considered to collect more RPs in the 

calibration process. 

• Use k-Means + EM if: the system requires lowest 

standard deviation and small computing time, but still 

have a low mean error with small number of RPs. 

 

IV. CONCLUSION 

In this paper, we proposed a concept on using frequency 

distribution as the RSS vector used in the radio map, named 

FDRM. We also proposed a probabilistic fingerprinting-

based algorithm using GMM as the PDF. In the offline phase, 

The GMM is obtained from the FDRM, then it can be 

improved by using either k-Means only or k-Means with EM. 

In the online phase, the GMM will be used as the distance 

metric in KNN and the weight in weighted average. This 

method is validated using 3 different datasets, taken from a 4 

m x 6 m classroom. Our experiment shows that FDRM is 

more informative compared to the mean, and our proposed 

method giving better performance in all indicators. K-Means 

provides a more complex GMM, resulting the lowest mean 

error in all datasets. K-Means + EM provides a simpler 

GMM, resulting the lowest standard deviation but a higher 

mean error in all datasets. Overall, our experiment shows that 

the proposed fingerprint and method can learn BLE signal 

fluctuation better than the benchmark method. 

In the future, we want to explore the possibilities of 

FDRM even further. The probability distribution of the RSS 

is not necessarily a Gaussian, therefore a more sophisticated 

algorithm such as neural networks can be used instead. The 

frequency distribution can also be used in deterministic 

fingerprinting by calculating degree of similarity between the 

input and the FDRM. 

REFERENCES 

Alfakih, M., Keche, M., & Benoudnine, H. (2015). Gaussian 

Mixture Modeling for Indoor Positioning WIFI 

System. 2015 3rd International Conference on 

Contro, Engineering & Information Technology 

(CEIT). Tlemcen. 

Bahl, P., & Padmanabhan, V. N. (2000). RADAR: An In-

Building RF-based User Location and Tracking 

System. Proceedings IEEE INFOCOM 2000. 

Conference on Computer Communications. 

Nineteenth Annual Joint Conference of the IEEE 

Computer and Communications Societies (Cat. 

No.00CH37064). Tel Aviv, Israel. 

Chandel, V., Ahmed, N., Arora, S., & Ghose, A. (2016). 

InLoc: An end-to-end robust indoor localization and 

routing solution using mobile phones and BLE 

beacons. 2016 International Conference on Indoor 

Positioning and Indoor Navigation (IPIN). Alcala 

de Henares. 

Chung-Hao Huang, L.-H. L.-L.-H. (2015). Real-Time RFID 

Indoor Positioning System Based on Kalman-Filter 

Drift Removal and Heron-Bilateration Location 

Estimation. IEEE Trans. Instrumentation and 

Measurement, 64(3), 728-739. 

Fisher, J. A. (2006). Indoor positioning and digital 

management: Emerging surveillance regimes in 

hospitals. In Surveillance and Security: 

Technological Politics and Power in Everyday Life 

(pp. 89-100). Abingdon: Routledge. 

Gomez, C., Oller, J., & Paradells, J. (2012). Overview and 

Evaluation of Bluetooth Low Energy: An Emerging 

Low-Power Wireless Technology. Sensors, 12(9), 

11734-11753. 

Goswami, A., Ortiz, L. E., & Das, S. R. (2011). WiGEM: a 

learning-based approach for indoor localization. 

CoNEXT '11 Proceedings of the Seventh 

COnference on emerging Networking EXperiments 

and Technologies. Tokyo. 

Han, T., Lu, X., & Lan, Q. (2010). Pattern recognition based 

Kalman filter for indoor localization using TDOA 

algorithm. Applied Mathematical Modelling, 

34(10), 2893-2900. 

Haque, I. T. (2014). A sensor based indoor localization 

through fingerprinting. Journal of Network and 

Computer Applications, 44, 220-229. 

Hossain, A. K., & Soh, W.-S. (2015). A Survey of 

Calibration-free Indoor Positioning Systems. 

Computer Communications, 66, 1-13. 

Ke, C., Wu, M., Chan, Y., & Lu, K. (2018). Developing a 

BLE Beacon-Based Location System Using 

Location Fingerprint Positioning for Smart Home 

Power Management. Energies, 11(12), 3464. 

Kim, S.-C., Jeong, Y.-S., & Park, S.-O. (2013). RFID-based 

indoor location tracking to ensure the safety of the 

elderly in smart home environments. Personal and 

ubiquitous computing, 17(8), 1699-1707. 

Lee, C. (2004). Indoor positioning system based on incident 

angles of infrared emitters. 30th Annual Conference 

of IEEE Industrial Electronics Society, 2004. 

IECON 2004. Busan, South Korea. 

Li, H. (2014). Low-Cost 3D Bluetooth Indoor Positioning 

with Least Square. Wireless Personal 

Communications, 78(2), 1331-1344. 

Mandal, A., Lopes, C. V., Givargis, T., Haghighat, A., 

Jurdak, R., & Baldi, P. (2005). Beep: 3D Indoor 

Positioning Using Audible Sound. IEEE Consumer 

Communications and Networking Conference 

(CCNC’05). Las Vegas. 



 
 

68 JURNAL EMACS (Engineering, MAthematics and Computer Science) Vol.7 No.1 January 2025: 61-68 

 

Medina, C., Segura, J. C., & Torre, Á. l. (2013). Ultrasound 

Indoor Positioning System Based on a Low-Power 

Wireless Sensor Network Providing Sub-

Centimeter Accuracy. Sensors, 13(3), 3501-3526. 

Mendelson, E. (2014, October 21). U.S. Patent No. 

8,866,673.  

Onofre, S., Silvestre, P. M., Pimentão, J. P., & Sousa, P. 

(2016). Surpassing Bluetooth Low Energy 

Limitations on Distance Determination. 2016 IEEE 

International Power Electronics and Motion 

Control Conference (PEMC). Varna. 

Papapostolou, A., & Chaouchi, H. (2011). RFID-assisted 

indoor localization and the impact of interference 

on its performance. Journal of Network and 

Computer Applications, 34(3), 902-913. 

Paterna, V. C., Auge, C. A., Aspas, J. P., & Bullones, M. A. 

(2017). A Bluetooth Low Energy Indoor 

Positioning System with Channel Diversity, 

Weighted Trilateration and Kalman Filtering. 

Sensors, 17(12), 2927. 

Prashant, K., M, N. A., Shreyas, N., Chaithanya, N., & 

Kuttaiah, P. (2009). Gaussian Mixture Model-

Expectation Maximization based Signal Strength 

Prediction for Seamless Connectivity in Hybrid 

Wireless Networks. MoMM '09 Proceedings of the 

7th International Conferencee on Advances in 

Mobile Computing and Multimedia. Kuala Lumpur, 

Malaysia. 

Pu, Y., & You, P. (2018). Indoor Positioning System Based 

on BLE Location Fingerprinting with classification 

approach. Applied Mathematical Modelling, 62, 

654-663. 

Ramani, S. V., & Tank., Y. N. (2014). Indoor Navigation On 

Google Maps And Localization Using RSS 

Fingerprinting. International Journal of 

Engineering Trends and Technology, 11(4), 171-

173. 

Ruggiero, L., Charith, D., Song, X., & Lucia, B. (2018). 

Investigating pedestrian navigation in indoor open 

space environments using big data. Applied 

Mathematical Modelling, 62, 499-509. 

Shin, B., Lee, J. H., Lee, T., & Kim, H. S. (2012). Enhanced 

weighted K-nearest neighbor algorithm for indoor 

Wi-Fi positioning systems. 2012 8th International 

Conference on Computing Technology and 

Information Management (NCM and ICNIT). 

Seoul. 

Wang, X., Gao, L., & Mao, S. (2017). CSI Phase 

Fingerprinting for Indoor Localization. IEEE 

Internet of Things Journal, 3(6), 1113-1123. 

Wang, X., Gao, L., Mao, S., & Pandey, S. (2015). DeepFi: 

Deep Learning for Indoor Fingerprinting Using 

Channel State Information. 2015 IEEE wireless 

communications and networking conference 

(WCNC). New Orleans. 

Wang, Y., Yang, X., Zhao, Y., Liu, Y., & Cuthbert, L. 

(2013). Bluetooth Positioning using RSSI and 

Triangulation Methods. 2013 IEEE 10th Consumer 

Communications and Networking Conference 

(CCNC). Las Vegas. 

Wong, C., Klukas, R., & Messier, G. G. (2008). Using 

WLAN infrastructure for angle-of-arrival indoor 

user location. 2008 IEEE 68th Vehicular 

Technology Conference. Calgary. 

Woo, S., Jeong, S., Mok, E., Xia, L., Choi, C., Pyeon, M., & 

Heo, J. (2011). Application of Wifi-based Indoor 

Positioning System For Labor Tracking At 

Construction Sites A Case Study In Guangzhou 

MTR. Automation in Construction, 20(1), 3-13. 

Yang, J., Wang, Z., & Zhang, X. (2015). An iBeacon-based 

Indoor Positioning Systems for Hospitals. 

International Journal of Smart Home, 9(7), 161-

168. 

Yang, Z., Wu, C., & Liu, Y. (2012). Locating in Fingerprint 

Space: Wireless Indoor Localization with Little 

Human Intervention. Proceedings of the 18th 

annual international conference on Mobile 

computing and networking. Istanbul. 

 

 


