

JURNAL EMACS
(Engineering, MAthematics and Computer Science) Vol.7 No.1 January 2025: 51-59

51

e-ISSN: 2686-2573

DOI:

10.21512/emacsjournal.v6

i3.11968

DOI: 10.21512/emacsjournal.v7i1.12562

DOI: 10.21512/emacsjournal.v6i3.11968

Developing Algorithm of Music Concepts … (Kelvin Minor)

Developing Algorithm of Music Concepts and Operations

Using The Modular Arithmetic

Kelvin Minor

Mathematics Department, School of Computer Science,

Bina Nusantara University,

Jakarta, Indonesia 11480

kelvin.minor@binus.ac.id;

Correspondence: kelvin.minor@binus.ac.id

Abstract – The rapid development of digital

music technology is closely intertwined with

advancements in both music theory and

mathematical formalism. This study aims to

bridge the gap between these fields by exploring

how mathematical concepts can enhance the

understanding and analysis of music theory.

Specifically, the research focuses on the

application of modular arithmetic to analyze

the circular structure of the chromatic scale, a

key concept in music. Modular arithmetic

enables the identification of patterns in pitch

relationships and the manipulation of musical

elements like transposition and interval

calculations. In addition to modular arithmetic,

the study also highlights the role of regular

expressions in music theory. Regular

expressions provide powerful tools for pattern

matching, which can be applied to recognize

and categorize musical components, such as

enharmonic equivalents (notes that sound the

same but are named differently). These tools

allow for the development of algorithms

capable of generating chords from given notes

or identifying chords from existing sets of notes.

By integrating modular arithmetic and regular

expressions, the study proposes a framework

for developing mathematical models and

algorithms to facilitate digital music analysis.

This approach not only enhances the theoretical

understanding of music but also holds practical

applications in digital music production and

education.

Keywords: music theory, enharmonic

equivalents, harmony analysis, mathematical

modeling, modular arithmetic

I. INTRODUCTION

The development of digital music

technology is progressing rapidly, supported by

advancements in algorithmic and programming

applications (Gorgoglione, Garavelli,

Panniello, & Natalicchio, 2023). By bridging

the gap between the music industry and

academic research, we can enhance the

potential for significant advancements and

improvements in digital music technology

(Pöpel & Jürgens, 2022). Providing a

foundation for learning music theory may

empower musicians and researchers to

understand the theoretical aspects of music,

such as pitch, harmony, and composition (Hess,

2020). Mathematical formalism plays a crucial

role in this process providing the exploration of

music in mathematical terms, aiding in the

formalization of musical structures (Mannone,

2021).

Copyright © 2025

52

JURNAL EMACS (Engineering, MAthematics and Computer Science) Vol.7 No.1 January 2025: 51-59

This study explores the relationship

between mathematics and music in depth,

highlighting how various mathematical

concepts can deepen our understanding of

music. It examines how mathematics explains

the principles of pitch and harmony, providing

precise language for describing the relationship

between pitches. By integrating mathematical

tools, the study enhances the theoretical

framework of music and offers practical

applications in digital music production and

education. The study aims to bridge the gap

between music theory and mathematical

formalism, showcasing their synergy and

potential to innovate digital music technology.

Specifically, it provides mathematical models

and algorithms for composing music, analyzing

musical structures, and demonstrating these

concepts' practical applications in digital music

technology.

II. METHODS

This section provides a complete and

detailed description of the steps undertaken in

conducting research as shown in Figure 1. The

research started with reviewing journals to

collect information of musical concepts and

mathematical concepts. The next step is

formulating all musical concepts using

mathematical equations, and then translating all

mathematical equations and all musical analysis

algorithms to programming language. The last

step is validating the system by doing conduct

testing and validation.

Figure 1. Research Method

1. Literature Review

This phase collects all the information from

scholarly sources, including books and journal

articles, to support the system's implementation.

The literature review for this study

encompasses a comprehensive examination of

music theory, mathematical concepts, and the

use of regular expressions. To accurately model

and manipulate musical elements

programmatically, the study delves into music

theory, such as musical notes, scales, chords,

and intervals. Furthermore, the study of

mathematics is applied to the development of

the algorithms for semitone note shifting,

interval calculations, chord notes generation

and chord identification. Regular expressions

are included in the literature review as well,

which is essential for the identification of

enharmonic equivalents. Then the problem

analysis process will be performed when all the

information has been collected to produce

problem formulations.

JURNAL EMACS
(Engineering, MAthematics and Computer Science) Vol.7 No.1 January 2025: 51-59

53

e-ISSN: 2686-2573

DOI:

10.21512/emacsjournal.v6

i3.11968

DOI: 10.21512/emacsjournal.v7i1.12562

DOI: 10.21512/emacsjournal.v6i3.11968

Developing Algorithm of Music Concepts … (Kelvin Minor)

This phase provides a comprehensive

account of the knowledge related to the

algorithm. It covers foundational theory, such

as

• Chromatic Scale and Enharmonic

Equivalent

The chromatic scale consists of 12 notes

that are a semitone (half step) apart (Palmer,

Manus, & Lethco, 1994). These notes are

named as follows: C, C#/Db, D, D#/Eb, E, F,

F#/Gb, G, G#/Ab, A, A#/Bb, B. After B, the

pattern repeats with C again. This repetition is

what creates the circular nature of the notes as

shown in Figure 2. This representation may

help musicians and researchers visualize key

relationships, intervals, and modulations within

the twelve-tone equal temperament system

(Durfee & Colton, 2015).

•

• Figure 2. Chromatic Circle

• Modular Arithmetic

Modular arithmetic is a system of

arithmetic for integers, where numbers wrap

around when they reach a certain value (Irving,

2004). Understanding the Division Theorem

provides a solid foundation for learning

modular arithmetic. The Division Theorem

states that for two positive integers 𝑎 and 𝑏,

there exist unique nonnegative integers 𝑞 and 𝑟,

with 𝑟 < 𝑎, as shown in Equation (1). This

theorem provides a fundamental understanding

of how integers can be divided to produce a

quotient 𝑞 and a remainder 𝑟. When 𝑎 is a

negative integer, the quotient 𝑞 may also be

negative, but the remainder 𝑟 must still be non-

negative and less than 𝑎.

𝑏 = 𝑎 × 𝑞 + 𝑟 (1)

Modular arithmetic relies on the

concept of remainders, which is directly derived

from the Division Theorem in Equation (1). In

modular arithmetic, we focus on the remainder

𝑟 when an integer 𝑏 is divided by another

integer 𝑎. In this way, two integers 𝑏 and 𝑟 are

said to be congruent modulo 𝑎 if they have the

same remainder when divided by 𝑎 as shown in

Equation (2).

𝑏 = 𝑟 (𝑚𝑜𝑑 𝑎) (2)

Applying the concept of modular

arithmetic in Equation (2) can lead to the

creation of a new set of integers known as the

set of equivalence classes modulo 𝑎, denoted as

ℤ𝑎. The set ℤ𝑎 denotes the set of integers

modulo 𝑎, where ℤ𝑎 = {0,1,2,3,4,5, … , 𝑎 − 1}.

Therefore, ℤ𝑎 is a finite group of order 𝑎, that

satisfies four properties (Baumslag & Chandler,

1968). A finite group must satisfy closure

property which ensures that combining any two

elements in the group under the operation yields

another element in the same group. A finite

group must satisfy associativity property which

ensures that the way operations are grouped

does not affect the outcome. A finite group must

have an identity element that acts as a neutral

element under the group operation, meaning it

leaves other elements unchanged when

combined with any element. A finite group

must have an inverse element that acts as a

counterpart element under the group operation,

meaning it produces the identity element when

combined with any element.

• Regular Expression

Regular Expression, often abbreviated as

regex, is a sequence of characters that forms a

search pattern that can be used to recognize the

pattern in the strings (Friedl, 2006). The

sequence of characters in regular expression can

include literal characters and metacharacters.

Literal characters can include letters (e.g., A, B,

54

JURNAL EMACS (Engineering, MAthematics and Computer Science) Vol.7 No.1 January 2025: 51-59

C), digits (e.g., 0, 1, 2), and other non-special

characters (e.g., #, !, @). In regular expression,

literal characters are used to specify exact

sequences to match the text. While

metacharacters are special characters in regex

that have a specific meaning or functionality,

beyond their literal interpretation. Common

metacharacters can be shown in Table 1.

Table 1. Metacharacters in Regular Expression

Metacharacters Roles

^ (caret) Matches the start of

the string

$ (dollar) Matches the end of the

string

? (question

mark)

Matches zero or one

occurrence of the

preceding element

[...] (square

brackets)

Matches any single

character within the

brackets

(…|…) (pipe) Used to specify

alternatives

\d Matches any digit

2. Mathematical Modeling

This phase translates all the insights from

the literature review into mathematical

equations, enabling the precise manipulation

and analysis of musical notes. In this study,

mathematical modeling played a crucial role in

developing algorithms that accurately reflect

musical concepts. In this phase, regular

expressions are used to match the enharmonic

equivalents. The study shows the role of

modular arithmetic to calculate intervals and

handle octave shifts. Besides that, modular

arithmetic operation can be used to shift notes

by a specified number of semitones. The

mathematical formulations were designed to

provide a solid mathematical formalism for

implementing the system across a variety of

musical scenarios.

3. System Development

In this phase, the study implements the

mathematical models in a programming

language. Python was chosen for its versality

and ease of use, but other programming

languages (e.g. Java or C#) could also be

suitable for this study. The implementation

focused on creating modular, reusable code that

adhered to the designed algorithms. Functions

were developed for each aspect of the problem,

including interval calculation and semitone

shifting. By using basic functionality, this study

also suggests algorithms for generating notes of

a chord and identifying chords from given

notes.

4. Testing and Validation

This phase aims to evaluate the system by

ensuring accurate results. A variety of test cases

were used, including validating musical notes

and keys, calculating intervals between notes,

shifting notes by semitones, and generating

chords according to theoretical expectations

and known standards. The results were

analyzed to confirm that the implemented

functions performed as intended, providing

reliable and accurate outputs for all scenarios

tested.

JURNAL EMACS
(Engineering, MAthematics and Computer Science) Vol.7 No.1 January 2025: 51-59

55

e-ISSN: 2686-2573

DOI:

10.21512/emacsjournal.v6

i3.11968

DOI: 10.21512/emacsjournal.v7i1.12562

DOI: 10.21512/emacsjournal.v6i3.11968

Developing Algorithm of Music Concepts … (Kelvin Minor)

III. RESULTS AND DISCUSSION

This section provides the results obtained

from the application of foundational

mathematical concepts to musical analysis and

composition. By leveraging the chromatic

scale, modular arithmetic, and regular

expressions, the study suggests formalisms and

algorithms that address various aspects of music

theory and practice. This section provides

detailed insights into the application of these

mathematical concepts, that may enhance

digital music technology and foster a deeper

understanding of music theory.

3.1 Analyzing the Chromatic Scale through

Modular Arithmetic

The circular nature of the notes in the

chromatic scale can be explained using modular

arithmetic. In modular arithmetic, two numbers

are considered equivalent (or congruent) if they

have the same remainder when divided by the

modulus. This modular arithmetic concept

helps to illustrate why the chromatic scale forms

a circular pattern, where after B, the pattern

repeats with C again. This paper suggests the

creation of a list in chromatic order, including

all enharmonic equivalents like C#/Db, D#/Eb,

F#/Gb, G#/Ab, and A#/Bb as shown in Table 2.

Even though the enharmonic equivalents are

technically the same pitch, they have different

names because of the key which they appear.

Programming Languages don't naturally

understand enharmonic equivalents in the same

way that musicians do. When working with

representing musical notes in a digital format, it

can be convenient to give the same index for all

enharmonic equivalents.

When dealing with musical notes

programmatically, accounting for enharmonic

equivalents (e.g., C# and Db) is necessary. To

achieve this, tools that recognize these patterns

are needed, and regular expressions (regex)

provide an effective solution because regex can

recognize the pattern. By using regex, patterns

can be defined that match both the natural notes

and their enharmonic equivalents. This study

also proposed a list of regular expressions that

ensure correct recognition of musical notes by

accounting for their enharmonic equivalents as

shown in Table 3. By using these patterns, the

program can correctly identify and index notes,

ensuring that each enharmonic equivalent is

treated as the same pitch.

Table 3. Musical Key Regular Expressions List

Index Regular Expression

(Regex)

Recognize

Keys

0 ^(C)$ C

1 ^(C#|Db)$ C# and Db

2 ^(D)$ D

3 ^(D#|Eb)$ D# and Eb

4 ^(E)$ E

5 ^(F)$ F

6 ^(F#|Gb)$ F# and Gb

7 ^(G)$ G

8 ^(G#|Ab)$ G# and Ab

9 ^(A)$ A

10 ^(A#|Bb)$ A# and Bb

11 ^(B)$ B

Table 2. Musical Key Index

Key C C#/Db D D#/Eb E F F#/Gb G G#/Ab A A#/Bb B

Index 0 1 2 3 4 5 6 7 8 9 10 11

56

JURNAL EMACS (Engineering, MAthematics and Computer Science) Vol.7 No.1 January 2025: 51-59

After identifying and indexing the musical

keys based on their various notations, the study

employs modular arithmetic to analyze their

circular nature. In this approach, each key is

assigned a numeric index within a modular

system of 12 as shown in Equation (3). This

representation captures the twelve semitones in

an octave, where each key's position wraps

around cyclically after reaching the 12th index.

This modular framework facilitates the

exploration of key relationships and transitions

in music theory, illustrating how musical keys

relate to one another in a continuous and

cyclical manner.

𝑖𝑛𝑑𝑒𝑥 = 𝑖𝑛𝑑𝑒𝑥 (𝑚𝑜𝑑 12) (3)

3.2 Musical Transposition using Modular

Arithmetic Operations

Music transposition refers to the process of

moving a piece of music from one key to

another while maintaining the same intervals

between notes (Hunt, 1970). This practice is

common in music composition, arrangement,

and performance to suit different instruments or

vocal ranges. In computational music

applications, musical transposition is

formulated using modular arithmetic

operations. In music theory and practice,

transposition involves two distinct processes:

transposing keys and transposing notes, each

serving different purposes and contexts within

musical composition and performance. While

transposing key refers to shifting a piece of

music from one key to another, transposing note

refers to adjusting individual notes within a

musical piece a specified number of semitones.

Key Transposition can be achieved by

operating the index using modular arithmetic as

shown in Equation (4). The identification of

note and the corresponding key index in Table

3 are fundamental to applying this formula. The

(old) key index is then manipulated using the

equation to facilitate key and note

transpositions. Using this equation, the (new)

key index wraps around within the range of 0 to

11 after applying the operation with the

specified number of semitones (both positive

and negative), and it effectively handles the

cyclic nature of musical elements.

On the other hand, Note Transposition not

only transposes the key but also shifts the note,

including its key and octave. An octave in music

represents a systematic division of pitch ranges

based on frequency relationships, with each

octave denoted by a non-negative integer

(natural number). To achieve this, the operation

determines the octave by combining the original

octave of the note with the integer result of

dividing the sum of the key index and the

number of semitones by 12 as shown in

Equation (5). Adding the key index and the

number of semitones gives a temporary value

that may exceed the range of a single octave (12

notes). The equation can calculate how many

complete octaves the transposition spans by

dividing the sum by 12. To obtain the integer

part of the calculation, the equation uses the

floor function to remove the decimal part.

3.3 Interval Calculation using Modular

Arithmetic

In music theory, an interval refers to the

pitch distance between two notes, quantifying

their relationship and playing a fundamental

role in defining melodies, harmonies, and

chords. Recognizing intervals is an essential

skill for developing holistic and sophisticated

musicianship (Wong, Chen, & Lim, 2021). This

study provides tools to calculate intervals by

determining the number of semitones between

two notes (note1 and note2). When both notes

are in the same octave, the interval can be

calculated by simply subtracting the key index

𝑘𝑒𝑦_𝑖𝑛𝑑𝑒𝑥𝑛𝑒𝑤 = (𝑘𝑒𝑦_𝑖𝑛𝑑𝑒𝑥𝑜𝑙𝑑 + 𝑠𝑒𝑚𝑖𝑡𝑜𝑛𝑒𝑠) (𝑚𝑜𝑑 12) (4)

𝑜𝑐𝑡𝑎𝑣𝑒𝑛𝑒𝑤 = 𝑜𝑐𝑡𝑎𝑣𝑒𝑜𝑙𝑑 + ⌊
𝑘𝑒𝑦𝑖𝑛𝑑𝑒𝑥 𝑜𝑙𝑑

+ 𝑠𝑒𝑚𝑖𝑡𝑜𝑛𝑒𝑠

12
⌋ (5)

JURNAL EMACS
(Engineering, MAthematics and Computer Science) Vol.7 No.1 January 2025: 51-59

57

e-ISSN: 2686-2573

DOI:

10.21512/emacsjournal.v6

i3.11968

DOI: 10.21512/emacsjournal.v7i1.12562

DOI: 10.21512/emacsjournal.v6i3.11968

Developing Algorithm of Music Concepts … (Kelvin Minor)

of the first note from the key index of the second

note as shown in Equation (6).

In music theory, notes can span across

various octaves. For accurate musical analysis,

especially when notes move between octaves,

really depends on understanding the complete

interval between them. In this study, achieving

accurate interval calculation across octaves in

music theory requires combinations of the pitch

and octave differences as shown in Equation

(7). Since there are 12 semitones in an octave,

multiplying the octave difference by 12

converts the octave difference into semitones.

But when the notes are in the same octave, this

term becomes zero and does not contribute to

the interval calculation.

3.4 Harmony Analysis using Modular

Arithmetic

In music theory, harmony is the

combination of different musical notes played

or sung simultaneously to create a pleasing

sound. It involves the vertical aspect of music,

focusing on how chords are constructed and

how they follow each other in a piece of music

(Jimenez & Kuusi, 2018). Chords are the

building blocks of harmony, creating the

harmonic structure that supports the melody and

overall musical expression. Understanding

harmony allows musicians to create tension in

music by using different chord combinations.

This study provides the dictionary that defines

various types of musical chords and their

corresponding intervals in semitones from the

root note as shown in Table 4. This dictionary

can be used to generate chords, identify chords

based on their notes, or analyze chord

structures.

Table 4. Chords and their Corresponding

Intervals

Chord Names

Corresponding

Intervals

(number of

semitones)

major 0, 4, 7

minor 0, 3, 7

diminished 0, 3, 6

augmented 0, 4, 8

suspended2 0, 2, 7

suspended4 0, 5, 7

major7 0, 4, 7, 11

minor7 0, 3, 7, 10

dominant7 0, 4, 7, 10

dominant7flat5 0, 4, 6, 10

diminished7 0, 3, 6, 9

minor7flat5 0, 3, 6, 10

minorMajor7 0, 3, 7, 11

augmentedMajor7 0, 4, 8, 11

augmentedMinor7 0, 4, 8, 10

added9 0, 2, 4, 7

major9 0, 2, 4, 7, 11

minor9 0, 2, 3, 7, 10

dominant9 0, 2, 4, 7, 10

dominant7sharp9 0, 3, 4, 7, 10

major13 0, 2, 4, 7, 9, 11

minor11 0, 2, 3, 5, 7, 10

dominant11 0, 2, 4, 5, 7, 10

dominant13 0, 2, 4, 7, 9, 10

This study provides two main algorithms

for working with musical chords. One of the

algorithms generates all combination notes that

form a specified chord name as shown in

Figure 3. It begins by extracting the root note

and chord type from the input. It then retrieves

the corresponding intervals for the chord type

from Table 4. Using these intervals, the

algorithm calculates the notes that form the

chord by applying the necessary

transformations as specified in Equation (4)

and Equation (5). This method ensures that the

generated chord accurately represents the

intended harmonic structure, facilitating

accurate musical analysis and composition.

𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = 𝑘𝑒𝑦_𝑖𝑛𝑑𝑒𝑥𝑛𝑜𝑡𝑒2 − 𝑘𝑒𝑦_𝑖𝑛𝑑𝑒𝑥𝑛𝑜𝑡𝑒1 (6)

𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = (𝑘𝑒𝑦_𝑖𝑛𝑑𝑒𝑥𝑛𝑜𝑡𝑒2 − 𝑘𝑒𝑦_𝑖𝑛𝑑𝑒𝑥𝑛𝑜𝑡𝑒1)

+ 12 × (𝑜𝑐𝑡𝑎𝑣𝑒𝑛𝑜𝑡𝑒2 − 𝑜𝑐𝑡𝑎𝑣𝑒𝑛𝑜𝑡𝑒1)
(7)

58

JURNAL EMACS (Engineering, MAthematics and Computer Science) Vol.7 No.1 January 2025: 51-59

Figure 3. Generate Chord's Notes Algorithm

The second algorithm determines the name

of a chord based on a given list of notes as

shown in Figure 4. It starts by selecting one of

the notes in the list as the root note one by one.

The algorithm then calculates the intervals

between the root note and the other notes using

Equation (7). These intervals are compared

against a predefined set of intervals in Table 4

for known chord types. If a match is found, the

algorithm constructs the chord name by

combining the root note with the identified

chord type. This process allows for the accurate

identification of chords from their constituent

notes, aiding musicians in understanding and

analyzing musical pieces.

Figure 4. Chord Identification Algorithm

IV. CONCLUSION

This study highlights the relationship

between mathematics and music, demonstrating

how the use of mathematical concepts can

explain the composition and analysis of music.

This research explains the circular nature of the

chromatic scale using modular arithmetic and

offers useful techniques for digitally expressing

JURNAL EMACS
(Engineering, MAthematics and Computer Science) Vol.7 No.1 January 2025: 51-59

59

e-ISSN: 2686-2573

DOI:

10.21512/emacsjournal.v6

i3.11968

DOI: 10.21512/emacsjournal.v7i1.12562

DOI: 10.21512/emacsjournal.v6i3.11968

Developing Algorithm of Music Concepts … (Kelvin Minor)

musical notes, including their enharmonic

equivalents. The proposed algorithms for

musical transposition and interval calculation

provide reliable tools for both musicians and

researchers. Harmony analysis through modular

arithmetic demonstrates the applications of

mathematical concepts in understanding chord

structures and generating harmonies.

REFERENCES

Baumslag, B., & Chandler, B. (1968). Theory

And Problems Of Group Theory. New

York: McGraw-Hill Book Co.

Durfee, D., & Colton, J. (2015). The physics of

musical scales: Theory and

experiment. American Journal of

Physics.

Friedl, J. E. (2006). Mastering Regular

Expressions. O'Reilly.

Gorgoglione, M., Garavelli, A. C., Panniello,

U., & Natalicchio, A. (2023).

Information Retrieval Technologies

and Big Data Analytics to Analyze

Product Innovation in the Music

Industry. MDPI.

Hess, J. (2020). Finding the “both/and”:

Balancing informal and formal music

learning. International Journal of

Music Education.

Hunt, R. (1970). Transposition for Music

Students. Oxford University Press.

Irving, R. S. (2004). Integers, Polynomials.

and Rings. Springer.

Jimenez, I., & Kuusi, T. (2018). Connecting

Chord Progressions with Specific

Pieces of Music. Psychology of Music.

Mannone, M. (2021). A musical reading of a

contemporary installation and back:

mathematical investigations of patterns

in Qwalala. Journal of Mathematics

and Music.

Palmer, W. A., Manus, M., & Lethco, A. V.

(1994). The Complete Book of Scales,

Chords, Arpeggios & Cadences.

Pöpel, C., & Jürgens, E. (2022). On

Overcoming the Gap between Industry

and Academic Research in the Field of

Music Technology. Business Meets

Technology.

Wong, S. S., Chen, S., & Lim, S. W. (2021).

Learning melodic musical intervals:

To block or to interleave? Psychology

of Music.

