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Abstract –  The rapid development of digital 

music technology is closely intertwined with 

advancements in both music theory and 

mathematical formalism. This study aims to 

bridge the gap between these fields by exploring 

how mathematical concepts can enhance the 

understanding and analysis of music theory. 

Specifically, the research focuses on the 

application of modular arithmetic to analyze 

the circular structure of the chromatic scale, a 

key concept in music. Modular arithmetic 

enables the identification of patterns in pitch 

relationships and the manipulation of musical 

elements like transposition and interval 

calculations. In addition to modular arithmetic, 

the study also highlights the role of regular 

expressions in music theory. Regular 

expressions provide powerful tools for pattern 

matching, which can be applied to recognize 

and categorize musical components, such as 

enharmonic equivalents (notes that sound the 

same but are named differently). These tools 

allow for the development of algorithms 

capable of generating chords from given notes 

or identifying chords from existing sets of notes. 

By integrating modular arithmetic and regular 

expressions, the study proposes a framework 

for developing mathematical models and 

algorithms to facilitate digital music analysis. 

This approach not only enhances the theoretical 

understanding of music but also holds practical 

applications in digital music production and 

education. 

 

Keywords:  music theory, enharmonic 

equivalents, harmony analysis, mathematical 

modeling, modular arithmetic 

 

 

I. INTRODUCTION 
 

The development of digital music 

technology is progressing rapidly, supported by 

advancements in algorithmic and programming 

applications (Gorgoglione, Garavelli, 

Panniello, & Natalicchio, 2023). By bridging 

the gap between the music industry and 

academic research, we can enhance the 

potential for significant advancements and 

improvements in digital music technology 

(Pöpel & Jürgens, 2022). Providing a 

foundation for learning music theory may 

empower musicians and researchers to 

understand the theoretical aspects of music, 

such as pitch, harmony, and composition (Hess, 

2020). Mathematical formalism plays a crucial 

role in this process providing the exploration of 

music in mathematical terms, aiding in the 

formalization of musical structures (Mannone, 

2021). 
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This study explores the relationship 

between mathematics and music in depth, 

highlighting how various mathematical 

concepts can deepen our understanding of 

music. It examines how mathematics explains 

the principles of pitch and harmony, providing 

precise language for describing the relationship 

between pitches. By integrating mathematical 

tools, the study enhances the theoretical 

framework of music and offers practical 

applications in digital music production and 

education. The study aims to bridge the gap 

between music theory and mathematical 

formalism, showcasing their synergy and 

potential to innovate digital music technology. 

Specifically, it provides mathematical models 

and algorithms for composing music, analyzing 

musical structures, and demonstrating these 

concepts' practical applications in digital music 

technology. 

 

II. METHODS 

 
This section provides a complete and 

detailed description of the steps undertaken in 

conducting research as shown in Figure 1. The 

research started with reviewing journals to 

collect information of musical concepts and 

mathematical concepts. The next step is 

formulating all musical concepts using 

mathematical equations, and then translating all 

mathematical equations and all musical analysis 

algorithms to programming language. The last 

step is validating the system by doing conduct 

testing and validation. 

 

 
Figure 1. Research Method 

1. Literature Review 

 

This phase collects all the information from 

scholarly sources, including books and journal 

articles, to support the system's implementation. 

The literature review for this study 

encompasses a comprehensive examination of 

music theory, mathematical concepts, and the 

use of regular expressions. To accurately model 

and manipulate musical elements 

programmatically, the study delves into music 

theory, such as musical notes, scales, chords, 

and intervals. Furthermore, the study of 

mathematics is applied to the development of 

the algorithms for semitone note shifting, 

interval calculations, chord notes generation 

and chord identification. Regular expressions 

are included in the literature review as well, 

which is essential for the identification of 

enharmonic equivalents. Then the problem 

analysis process will be performed when all the 

information has been collected to produce 

problem formulations. 
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This phase provides a comprehensive 

account of the knowledge related to the 

algorithm. It covers foundational theory, such 

as 

• Chromatic Scale and Enharmonic 

Equivalent 

The chromatic scale consists of 12 notes 

that are a semitone (half step) apart (Palmer, 

Manus, & Lethco, 1994). These notes are 

named as follows: C, C#/Db, D, D#/Eb, E, F, 

F#/Gb, G, G#/Ab, A, A#/Bb, B. After B, the 

pattern repeats with C again. This repetition is 

what creates the circular nature of the notes as 

shown in Figure 2. This representation may 

help musicians and researchers visualize key 

relationships, intervals, and modulations within 

the twelve-tone equal temperament system 

(Durfee & Colton, 2015).  

•  

• Figure 2. Chromatic Circle 

• Modular Arithmetic 

Modular arithmetic is a system of 

arithmetic for integers, where numbers wrap 

around when they reach a certain value (Irving, 

2004). Understanding the Division Theorem 

provides a solid foundation for learning 

modular arithmetic. The Division Theorem 

states that for two positive integers 𝑎 and 𝑏, 

there exist unique nonnegative integers 𝑞 and 𝑟, 

with 𝑟 < 𝑎, as shown in Equation (1). This 

theorem provides a fundamental understanding 

of how integers can be divided to produce a 

quotient 𝑞 and a remainder 𝑟. When 𝑎 is a 

negative integer, the quotient 𝑞 may also be 

negative, but the remainder 𝑟 must still be non-

negative and less than 𝑎. 

𝑏 = 𝑎 × 𝑞 + 𝑟  (1) 

Modular arithmetic relies on the 

concept of remainders, which is directly derived 

from the Division Theorem in Equation (1). In 

modular arithmetic, we focus on the remainder 

𝑟 when an integer 𝑏 is divided by another 

integer 𝑎. In this way, two integers 𝑏 and 𝑟 are 

said to be congruent modulo 𝑎 if they have the 

same remainder when divided by 𝑎 as shown in 

Equation (2). 

𝑏 = 𝑟 (𝑚𝑜𝑑 𝑎) (2) 

Applying the concept of modular 

arithmetic in Equation (2) can lead to the 

creation of a new set of integers known as the 

set of equivalence classes modulo 𝑎, denoted as 

ℤ𝑎. The set ℤ𝑎 denotes the set of integers 

modulo 𝑎, where ℤ𝑎 = {0,1,2,3,4,5, … , 𝑎 − 1}. 

Therefore, ℤ𝑎 is a finite group of order 𝑎, that 

satisfies four properties (Baumslag & Chandler, 

1968). A finite group must satisfy closure 

property which ensures that combining any two 

elements in the group under the operation yields 

another element in the same group. A finite 

group must satisfy associativity property which 

ensures that the way operations are grouped 

does not affect the outcome. A finite group must 

have an identity element that acts as a neutral 

element under the group operation, meaning it 

leaves other elements unchanged when 

combined with any element. A finite group 

must have an inverse element that acts as a 

counterpart element under the group operation, 

meaning it produces the identity element when 

combined with any element. 

• Regular Expression 

Regular Expression, often abbreviated as 

regex, is a sequence of characters that forms a 

search pattern that can be used to recognize the 

pattern in the strings (Friedl, 2006). The 

sequence of characters in regular expression can 

include literal characters and metacharacters. 

Literal characters can include letters (e.g., A, B, 
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C), digits (e.g., 0, 1, 2), and other non-special 

characters (e.g., #, !, @). In regular expression, 

literal characters are used to specify exact 

sequences to match the text. While 

metacharacters are special characters in regex 

that have a specific meaning or functionality, 

beyond their literal interpretation. Common 

metacharacters can be shown in Table 1. 

Table 1. Metacharacters in Regular Expression 

Metacharacters Roles 

^ (caret) Matches the start of 

the string 

$ (dollar) Matches the end of the 

string 

? (question 

mark) 

Matches zero or one 

occurrence of the 

preceding element 

[...] (square 

brackets) 

Matches any single 

character within the 

brackets 

(…|…) (pipe) Used to specify 

alternatives 

\d Matches any digit 

2. Mathematical Modeling 

 

This phase translates all the insights from 

the literature review into mathematical 

equations, enabling the precise manipulation 

and analysis of musical notes. In this study, 

mathematical modeling played a crucial role in 

developing algorithms that accurately reflect 

musical concepts. In this phase, regular 

expressions are used to match the enharmonic 

equivalents. The study shows the role of 

modular arithmetic to calculate intervals and 

handle octave shifts. Besides that, modular 

arithmetic operation can be used to shift notes 

by a specified number of semitones. The 

mathematical formulations were designed to 

provide a solid mathematical formalism for 

implementing the system across a variety of 

musical scenarios. 

 

3. System Development 

 

In this phase, the study implements the 

mathematical models in a programming 

language. Python was chosen for its versality 

and ease of use, but other programming 

languages (e.g. Java or C#) could also be 

suitable for this study. The implementation 

focused on creating modular, reusable code that 

adhered to the designed algorithms. Functions 

were developed for each aspect of the problem, 

including interval calculation and semitone 

shifting. By using basic functionality, this study 

also suggests algorithms for generating notes of 

a chord and identifying chords from given 

notes. 

 

4. Testing and Validation 

 

This phase aims to evaluate the system by 

ensuring accurate results. A variety of test cases 

were used, including validating musical notes 

and keys, calculating intervals between notes, 

shifting notes by semitones, and generating 

chords according to theoretical expectations 

and known standards. The results were 

analyzed to confirm that the implemented 

functions performed as intended, providing 

reliable and accurate outputs for all scenarios 

tested. 
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III. RESULTS AND DISCUSSION 
 

This section provides the results obtained 

from the application of foundational 

mathematical concepts to musical analysis and 

composition. By leveraging the chromatic 

scale, modular arithmetic, and regular 

expressions, the study suggests formalisms and 

algorithms that address various aspects of music 

theory and practice. This section provides 

detailed insights into the application of these 

mathematical concepts, that may enhance 

digital music technology and foster a deeper 

understanding of music theory. 

 

3.1 Analyzing the Chromatic Scale through 

Modular Arithmetic 

 

The circular nature of the notes in the 

chromatic scale can be explained using modular 

arithmetic. In modular arithmetic, two numbers 

are considered equivalent (or congruent) if they 

have the same remainder when divided by the 

modulus. This modular arithmetic concept 

helps to illustrate why the chromatic scale forms 

a circular pattern, where after B, the pattern 

repeats with C again. This paper suggests the 

creation of a list in chromatic order, including 

all enharmonic equivalents like C#/Db, D#/Eb, 

F#/Gb, G#/Ab, and A#/Bb as shown in Table 2. 

Even though the enharmonic equivalents are 

technically the same pitch, they have different 

names because of the key which they appear. 

Programming Languages don't naturally 

understand enharmonic equivalents in the same 

way that musicians do. When working with 

representing musical notes in a digital format, it 

can be convenient to give the same index for all 

enharmonic equivalents. 

 

When dealing with musical notes 

programmatically, accounting for enharmonic 

equivalents (e.g., C# and Db) is necessary. To 

achieve this, tools that recognize these patterns 

are needed, and regular expressions (regex) 

provide an effective solution because regex can 

recognize the pattern. By using regex, patterns 

can be defined that match both the natural notes 

and their enharmonic equivalents.  This study 

also proposed a list of regular expressions that 

ensure correct recognition of musical notes by 

accounting for their enharmonic equivalents as 

shown in Table 3. By using these patterns, the 

program can correctly identify and index notes, 

ensuring that each enharmonic equivalent is 

treated as the same pitch. 

Table 3. Musical Key Regular Expressions List 

Index Regular Expression 

(Regex) 

Recognize 

Keys 

0 ^(C)$ C 

1 ^(C#|Db)$ C# and Db 

2 ^(D)$ D 

3 ^(D#|Eb)$ D# and Eb 

4 ^(E)$ E 

5 ^(F)$ F 

6 ^(F#|Gb)$ F# and Gb 

7 ^(G)$ G 

8 ^(G#|Ab)$ G# and Ab 

9 ^(A)$ A 

10 ^(A#|Bb)$ A# and Bb 

11 ^(B)$ B 

Table 2. Musical Key Index 

Key  C C#/Db D D#/Eb E F F#/Gb G G#/Ab A A#/Bb B 

Index  0 1 2 3 4 5 6 7 8 9 10 11 
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After identifying and indexing the musical 

keys based on their various notations, the study 

employs modular arithmetic to analyze their 

circular nature. In this approach, each key is 

assigned a numeric index within a modular 

system of 12 as shown in Equation (3). This 

representation captures the twelve semitones in 

an octave, where each key's position wraps 

around cyclically after reaching the 12th index. 

This modular framework facilitates the 

exploration of key relationships and transitions 

in music theory, illustrating how musical keys 

relate to one another in a continuous and 

cyclical manner. 

𝑖𝑛𝑑𝑒𝑥 = 𝑖𝑛𝑑𝑒𝑥 (𝑚𝑜𝑑 12) (3) 

3.2 Musical Transposition using Modular 

Arithmetic Operations 

 

Music transposition refers to the process of 

moving a piece of music from one key to 

another while maintaining the same intervals 

between notes (Hunt, 1970). This practice is 

common in music composition, arrangement, 

and performance to suit different instruments or 

vocal ranges. In computational music 

applications, musical transposition is 

formulated using modular arithmetic 

operations. In music theory and practice, 

transposition involves two distinct processes: 

transposing keys and transposing notes, each 

serving different purposes and contexts within 

musical composition and performance. While 

transposing key refers to shifting a piece of 

music from one key to another, transposing note 

refers to adjusting individual notes within a 

musical piece a specified number of semitones. 

 

Key Transposition can be achieved by 

operating the index using modular arithmetic as 

shown in Equation (4). The identification of 

note and the corresponding key index in Table 

3 are fundamental to applying this formula. The 

(old) key index is then manipulated using the 

equation to facilitate key and note 

transpositions. Using this equation, the (new) 

key index wraps around within the range of 0 to 

11 after applying the operation with the 

specified number of semitones (both positive 

and negative), and it effectively handles the 

cyclic nature of musical elements. 

 

On the other hand, Note Transposition not 

only transposes the key but also shifts the note, 

including its key and octave. An octave in music 

represents a systematic division of pitch ranges 

based on frequency relationships, with each 

octave denoted by a non-negative integer 

(natural number). To achieve this, the operation 

determines the octave by combining the original 

octave of the note with the integer result of 

dividing the sum of the key index and the 

number of semitones by 12 as shown in 

Equation (5). Adding the key index and the 

number of semitones gives a temporary value 

that may exceed the range of a single octave (12 

notes). The equation can calculate how many 

complete octaves the transposition spans by 

dividing the sum by 12. To obtain the integer 

part of the calculation, the equation uses the 

floor function to remove the decimal part. 

 

3.3 Interval Calculation using Modular 

Arithmetic 

 

In music theory, an interval refers to the 

pitch distance between two notes, quantifying 

their relationship and playing a fundamental 

role in defining melodies, harmonies, and 

chords. Recognizing intervals is an essential 

skill for developing holistic and sophisticated 

musicianship (Wong, Chen, & Lim, 2021). This 

study provides tools to calculate intervals by 

determining the number of semitones between 

two notes (note1 and note2). When both notes 

are in the same octave, the interval can be 

calculated by simply subtracting the key index 

𝑘𝑒𝑦_𝑖𝑛𝑑𝑒𝑥𝑛𝑒𝑤 = (𝑘𝑒𝑦_𝑖𝑛𝑑𝑒𝑥𝑜𝑙𝑑 + 𝑠𝑒𝑚𝑖𝑡𝑜𝑛𝑒𝑠) (𝑚𝑜𝑑 12) (4) 

𝑜𝑐𝑡𝑎𝑣𝑒𝑛𝑒𝑤 = 𝑜𝑐𝑡𝑎𝑣𝑒𝑜𝑙𝑑 + ⌊
𝑘𝑒𝑦𝑖𝑛𝑑𝑒𝑥 𝑜𝑙𝑑

+ 𝑠𝑒𝑚𝑖𝑡𝑜𝑛𝑒𝑠

12
⌋ (5) 
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of the first note from the key index of the second 

note as shown in Equation (6). 

 

In music theory, notes can span across 

various octaves. For accurate musical analysis, 

especially when notes move between octaves, 

really depends on understanding the complete 

interval between them. In this study, achieving 

accurate interval calculation across octaves in 

music theory requires combinations of the pitch 

and octave differences as shown in Equation 

(7). Since there are 12 semitones in an octave, 

multiplying the octave difference by 12 

converts the octave difference into semitones. 

But when the notes are in the same octave, this 

term becomes zero and does not contribute to 

the interval calculation. 

 

3.4 Harmony Analysis using Modular 

Arithmetic 

 

In music theory, harmony is the 

combination of different musical notes played 

or sung simultaneously to create a pleasing 

sound. It involves the vertical aspect of music, 

focusing on how chords are constructed and 

how they follow each other in a piece of music 

(Jimenez & Kuusi, 2018). Chords are the 

building blocks of harmony, creating the 

harmonic structure that supports the melody and 

overall musical expression. Understanding 

harmony allows musicians to create tension in 

music by using different chord combinations. 

This study provides the dictionary that defines 

various types of musical chords and their 

corresponding intervals in semitones from the 

root note as shown in Table 4. This dictionary 

can be used to generate chords, identify chords 

based on their notes, or analyze chord 

structures. 

Table 4. Chords and their Corresponding 

Intervals 

Chord Names 

Corresponding 

Intervals 

(number of 

semitones) 

major 0, 4, 7 

minor 0, 3, 7 

diminished 0, 3, 6 

augmented 0, 4, 8 

suspended2 0, 2, 7 

suspended4 0, 5, 7 

major7 0, 4, 7, 11 

minor7 0, 3, 7, 10 

dominant7 0, 4, 7, 10 

dominant7flat5 0, 4, 6, 10 

diminished7 0, 3, 6, 9 

minor7flat5 0, 3, 6, 10 

minorMajor7 0, 3, 7, 11 

augmentedMajor7 0, 4, 8, 11 

augmentedMinor7 0, 4, 8, 10 

added9 0, 2, 4, 7 

major9 0, 2, 4, 7, 11 

minor9 0, 2, 3, 7, 10 

dominant9 0, 2, 4, 7, 10 

dominant7sharp9 0, 3, 4, 7, 10 

major13 0, 2, 4, 7, 9, 11 

minor11 0, 2, 3, 5, 7, 10 

dominant11 0, 2, 4, 5, 7, 10 

dominant13 0, 2, 4, 7, 9, 10 

 

This study provides two main algorithms 

for working with musical chords. One of the 

algorithms generates all combination notes that 

form a specified chord name as shown in 

Figure 3. It begins by extracting the root note 

and chord type from the input. It then retrieves 

the corresponding intervals for the chord type 

from Table 4. Using these intervals, the 

algorithm calculates the notes that form the 

chord by applying the necessary 

transformations as specified in Equation (4) 

and Equation (5). This method ensures that the 

generated chord accurately represents the 

intended harmonic structure, facilitating 

accurate musical analysis and composition. 

 

𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = 𝑘𝑒𝑦_𝑖𝑛𝑑𝑒𝑥𝑛𝑜𝑡𝑒2 − 𝑘𝑒𝑦_𝑖𝑛𝑑𝑒𝑥𝑛𝑜𝑡𝑒1 (6) 

𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = (𝑘𝑒𝑦_𝑖𝑛𝑑𝑒𝑥𝑛𝑜𝑡𝑒2 − 𝑘𝑒𝑦_𝑖𝑛𝑑𝑒𝑥𝑛𝑜𝑡𝑒1)

+ 12 × (𝑜𝑐𝑡𝑎𝑣𝑒𝑛𝑜𝑡𝑒2 − 𝑜𝑐𝑡𝑎𝑣𝑒𝑛𝑜𝑡𝑒1) 
(7) 
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Figure 3. Generate Chord's Notes Algorithm 

 

The second algorithm determines the name 

of a chord based on a given list of notes as 

shown in Figure 4. It starts by selecting one of 

the notes in the list as the root note one by one. 

The algorithm then calculates the intervals 

between the root note and the other notes using 

Equation (7). These intervals are compared 

against a predefined set of intervals in Table 4 

for known chord types. If a match is found, the 

algorithm constructs the chord name by 

combining the root note with the identified 

chord type. This process allows for the accurate 

identification of chords from their constituent 

notes, aiding musicians in understanding and 

analyzing musical pieces. 

 

 
Figure 4. Chord Identification Algorithm 

 

 

 

 

 

IV. CONCLUSION 
 

This study highlights the relationship 

between mathematics and music, demonstrating 

how the use of mathematical concepts can 

explain the composition and analysis of music. 

This research explains the circular nature of the 

chromatic scale using modular arithmetic and 

offers useful techniques for digitally expressing 
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musical notes, including their enharmonic 

equivalents. The proposed algorithms for 

musical transposition and interval calculation 

provide reliable tools for both musicians and 

researchers. Harmony analysis through modular 

arithmetic demonstrates the applications of 

mathematical concepts in understanding chord 

structures and generating harmonies. 
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