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Abstract - Sign language is a harmonious combination of 
hand gestures, postures, and facial expressions. One of the 
most used and also the most researched Sign Language 
is American Sign Language (ASL) because it is easier 
to implement and also more common to apply on a daily 
basis. More and more research related to American Sign 
Language aims to make it easier for the speech impaired 
to communicate with other normal people. Now, American 
Sign Language research is starting to refer to the vision 
of computers so that everyone in the world can easily 
understand American Sign Language through machine 
learning. Technology continues to develop sign language 
translation, especially American Sign Language using 
the Convolutional Neural Network. This study uses the 
Densenet201 and DenseNet201 PyTorch architectures 
to translate American Sign Language, then display the 
translation into written form on a monitor screen. There 
are 4 comparisons of data splits, namely 90:10, 80:20, 
70:30, and 60:30. The results showed the best results on 
DenseNet201 PyTorch in the train-test dataset comparison 
of 70:30 with an accuracy of 0.99732, precision of 0.99737, 
recall (sensitivity) of 0.99732, specificity of 0.99990, F1-
score of 0.99731, and error of 0.00268. The results of the 
translation of American Sign Language into written form 
were successfully carried out by performance evaluation 
using ROUGE-1 and ROUGE-L resulting in a precision of 
0.14286, Recall (sensitivity) 0.14286, and F1-score. The 
more precise and sensitive the ROUGE results, the more 
accurate the real-time sign language translation will be.

Keywords: American Sign Language; Translation; 
Subtitles; DenseNet20; DenseNet201 PyTorch

I. INTRODUCTION

Sign language became a colloquial language for 
people who were speechless. Previous researchers used 
sign language to communicate with people with disabilities. 
Sign language has always been a challenge until it finally 
becomes the language used in conversations with people in 
general (Delpreto et al., 2022; Malakan, 2021). 

Problems of deafness or disability can occur 
from birth, or caused by an accident so that they cannot 
communicate properly. On this basis, many researchers are 
interested in overcoming or even treating deafness until 
now (Sensuse et al., 2022; Wei et al., 2023).

Previous research that has focused on the most about 
deafness is in the fields of health (Huang & Xia, 2020), 
social (Xu et al., 2023), and education (Al-Fraihat et al., 
2020). Recommendations from this field show that the 
technology field is becoming very effective and relevant 
because technology is always experiencing development and 
massive around the world (Sundar & Bagyammal, 2022). 

One of research (Marjusalinah et al., 2021) has 
succeeded in classifying American sign language finger 
spelling with very high accuracy so that computers can 
recognize American sign language. This research should be 
continued to the next stage, which is to display the writing 
on the monitor as previously classified. This study uses 
DenseNet121 as one of the convolutional Neural Network 
architectures used.

Among the sign languages that are growing in the 
world, American sign language is one of the many sign 
languages used around the world (Gurbuz, 2020). One of 
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the advantages of this sign language is that its use is from 
local to foreign, there are also not many varieties so it is 
easy to remember (Abdullahi & Chamnongthai, 2022)
recognition of similar ASL words confused translation 
algorithms, which lead to misclassification. In this paper, 
based on fast fisher vector (FFV).

Meanwhile, another researcher (Lu & Chuang, 
2022) researched American Sign Language as a method 
for taking pictures and generating letters with machine 
learning. Machine learning has produced a wide variety of 
translations into other languages more accurately.

Over time, American Sign Language research has 
evolved into the application of deep learning. However, 
at the beginning of its development (Zhu et al., 2020), 
the introduction of American Sign Language using deep 
learning faced challenges regarding the need for an optimal 
feature extraction and pre-processing process, which 
required efficient time and more accurate translation.

Meanwhile, similar research (Xu et al., 2023) applies 
deep learning methods to image recognition and proves that 
deep learning methods continue to evolve to become more 
effective along with deep machine learning. The more data 
used and the training carried out, the more accurate the 
expected results will be.

One of the deep learning that is still used and continues 
to grow today is the Convolutional Neural Network (CNN) 
(Huang et al., 2017). CNN has become one of the many 
solutions in dealing with the problem of digital imagery, 
especially in American Sign Language translation. CNNs 
have a framework that has been conceptualized in such a 
way that the weight division, scaling, and displacement are 
relatively the same.

The development of American Sign Language 
translation technology, by using CNN in translation, has 
facilitated research in improving accessibility for people 
with disabilities who use American Sign Language as their 
primary language. Subtitles are very useful so that everyone 
can use them to learn American Sign Language (Prajwal et 
al., 2022)which has a very different signing alphabet (e.g., 
two-handed instead of one-handed.

DenseNet201 and DenseNet201 PyTorch is one of 
the CNN architectures that is still popular since 2014 until 
now in digital image processing or RGB pixels (Beal, 2021; 
Huang et al., 2017). This research is expected to produce 
high accuracy evaluation metric results so that it can 
accurately translate between actual data and prediction data.

So, this study intends to implement a convolutional 
neural network to display letters that are arranged into 
words or sentences so that they are worthy of being called 
subtitles. The purpose of the study was to show the results 
of data processing on the tested model that DenseNet201 
PyTorch has the potential to be developed in American 
Sign Language translation because it has the best results 
in certain data splits. This is shown in the comparison of 
accuracy between the two models. And this study shows 
the success of the model displaying writing. It is hoped that 
it can be developed in future research for better American 

Sign Language translation results.

II. METHODS

This research starts from the previous research that 
has been summarized in the introduction. Furthermore, 
it will be explained starting from data preparation to 
evaluating the performance of the Convolutional Neural 
Network and American Sign Language translation in the 
form of subtitles.

2.1 Dataset
The dataset used comes from kaggle.com/

grassknoted/asl-alphabet. The website contains images of 
hands demonstrating American Sign Language by class. 
Each class contains 3,000 images, making the total dataset 
available as many as 87,000. The class in question consists 
of 29 classes, which consist of letters in the alphabet, namely 
from the letters A to Z, plus the functions del (delete), 
nothing, and space.

This study uses 300 data for each class, so that a 
total of 8,700 data is ready to be processed for training and 
testing. This study also applies the 29 classes mentioned 
earlier.

2.2 DenseNet Architecture
As mentioned in the introduction, the method used 

is to use a Convolutional Neural Network. A convolutional 
neural network is a convolutional network that operates both 
linearly and non-linear (Ali & Kim, 2020). There are many 
types and architectures of convolutional neural networks, 
but this study uses DenseNet. 

This study specifically uses DenseNet for three 
reasons. First, DenseNet has been proven to show high 
accuracy in previous studies (Marjusalinah et al., 2021) 
with an accuracy evaluation result of 0.95. Second, since 
2016 since its first appearance, DenseNet is still feasible 
to use and is one of the architectures that continues to be 
developed for image research (Liang et al., 2022). Third, 
DenseNet architecture testing has been successful by using 
various objects, such as horses (Huang et al., 2017), cars, 
and palm patterns in the context of hand sign language 
(Abdullahi & Chamnongthai, 2022)recognition of similar 
ASL words confused translation algorithms, which lead to 
misclassification. In this paper, based on fast fisher vector 
(FFV). 

DenseNet (Qin et al., 2023) is a layered architecture 
with specific map features. Map features are arranged like 
interconnected chains, so data will pass through all layers 
without exception. The map feature bypasses the batch 
normalization, ReLU, and 3x3 convolution functions within 
DenseNet. The resulting output will be repeated until the 
most optimal result is obtained (Kouvakis et al., 2024).

DenseNet introduces a solid block that takes the 
output based on the previous convolutional layer so that it 
produces an output feature that is then passed on to the next 
convolutional layer. In Figure 1, the convolutional layer is 
represented by x0, x1, x2, x3, and x4 with the input being 
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an image obtained from the dataset. Meanwhile, H1, H2, 
H3, and H4 have Batch Normalization (BN), rectified linear 
units (ReLU), Pooling, and Convolution (Conv) processes. 
This happens gradually until it produces the prediction 
expected by the research.

Figure 1. DenseNet Architecture 

Based on Figure 1, there are five layer blocks where 
each layer has its own feature-maps process as input. 
Between the two layers, there is a convolution and pooling 
process with details like Table I (Huang et al., 2017)more 
accurate, and efficient to train if they contain shorter 
connections between layers close to the input and those close 
to the output. In this paper, we embrace this observation and 
introduce the Dense Convolutional Network (DenseNet.

In this study, the DenseNet201 architecture use 
DenseNet201 and DenseNet201 PyTorch. It is called 
DenseNet201 because it has a number and size of 201 filters. 
Meanwhile, it is called PyTorch because it implements 
TorchVision on the DenseNet201 architecture. What 
distinguishes them is the library used (Huang et al., 2017). 

In more detail, DenseNet201 has a relatively similar 
Output Size pattern. Starting from the convolution layer 
with an output size of 112 x 112. After the pooling process, 
the output size is compressed to 56 x 56 with 3 x 3 max 
pool and 2 strides. Stride can be said to be a filter shift. 
The process continues in the first Block Dense stage with 
a convolutional 1 x 1 and a transition layer with a 2 x 2 
pooling average and stride 2. Pooling is also often called 
subsampling which is a reduction in the size of the matrix. 
Generally, what is often used is average pooling by taking 
the average convolutional value, while max pooling takes 
the maximum convolutional value (Bantupalli, 2019).

Table I. DenseNet201 Architecture

Layer name Output size Number and size of 
filters

Convolution layer 112x112 7x7 conv, stride 2

Pooling layer 56x56 3x3 max pool, stride 2

Block Dense (1) 56x56 1x1 conv

Transition layer 
(1)

56x56 [(1x1 conv) ¦ (3x3 
conv)] x6

28x28 2x2 avg pool, stride 2

Block Dense (2) 28x28 [(1x1 conv) ¦ (3x3 
conv)] x12

Transition layer 
(2)

28x28 1x1 conv

14x14 2x2 avg pool, stride 2

Block Dense (3) 14x14 [(1x1 conv) ¦ (3x3 
conv)] x48

Transition layer 
(3)

14x14 1x1 conv

7x7 2x2 avg pool, stride 2

Block Dense (4) 7x7 [(1x1 conv) ¦ (3x3 
conv)] x32

Transition layer 
1x1 7x7 global average pool

1000D Fully Connected, 
Softmax

DenseNet201 Pytorch is an application of the 
DenseNet201 architecture based on PyTorch. Pytorch itself 
is a deep learning framework used to train and construct 
convolutional neural network models. DenseNet201 
PyTorch has advantages such as reducing losses in 
gradient problems that DenseNet does not have in 
general, strengthening feature propagation by stimulating 
feature maps more optimally, and reducing the number of 
parameters substantially where more effective parameters 
for accuracy are maintained.

2.3 Preprocessing data 
The dataset of 8,700 and 300 data for each class, the 

DenseNet201 and DenseNet201 PyTorch models will be 
train-tested with a ratio of 90:10, 80:20, 70:30, and 60:40, 
respectively. However, in the results and discussion, 1 best 
model from DenseNet201 and DenseNet201 PyTorch will 
be selected for the results of the confusion matrix (Saleh et 
al., 2024).

In this data preprocessing, the dataset is processed 
in such a way that the size is adjusted to 200x200 pixels 
of RGB image (Red, Green, Blue). The pixel range that 
should be 0-255 has been simplified to 0-1, making the 
initialization process faster and more efficient. 

Figure 2. RGB Image

Figure 2: Image of RGB image in RGB format, screen 
image, and additive colors. RGB format for subtractive 
colors and colors not related to CYMK technology (cyan, 
magenta, yellow, and key (black) are subtractive colors that 
are available for unconventional colors, the most concise 
colors, the most intense colors, and the most important 
colors are attractive colors.
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Classes that contain American Sign Language data 
in alphabets will be labeled so that they match between 
classes to labels. In this study, class 0 was labeled A, class 1 
was labeled B, and so on. Then the last 3 classes in order are 
del (delete) for class 26, nothing for class 27, and space for 
class 28. Thus, the classes used are as many as 29 classes.

2.4 Performance Metric Calculation
This study calculates the quality of translation 

by paying attention to the evaluation of the accuracy 
performance of each model with a certain comparison. The 
parameters to be evaluated include accuracy, precision, 
specifications, recal / sensitivity, F1-score, and error as 
shown in Table II. 

Table II. Formulas used for performance evaluation

Accuracy (A) = (TP+TN) / (TP+TN+FP+FN) (2.1)

Precision (P) = TP / (TP+FP) (2.2)

Recall (R) = TP / (TP+FN) (2.3)

S = TN / (TN + FP) (2.4)

F1 = 2 x (P x R) / (P + R) (2.5)

E = 1 - A (2.6)

The explanation of each performance evaluation in 
question. Accuracy (formula 2.1) calculates the percentage 
of correct predictions from the total predictions made by 
the model to provide an overview of the overall model 
performance. Precision (formula 2.2) is the ratio of correct 
predictions to total True Positive and False Positive 
predictions which is useful for reducing the number of 
diagnoses. Recall (formula 2.3) is the sensitivity or ratio 
of positive correct predictions to total positive data, which 
is important when the prediction is wrong as negative to 
minimize the number of incorrectly diagnosed negatives. 
The specification (formula 2.4) is the ratio of negative correct 
predictions to total actual negative data which helps identify 
the model’s negative data precisely. F1-score (formula 2.5) 
is a linear average between precision and sensitivity, so it 
is very useful if there is a class imbalance in the dataset. 
Errors (formula 2.6) are the number of prediction errors 
made by the model to understand the areas where the model 
needs improvement. And finally, ROUGE (Recall-Oriented 
Understudy for Gisting Evaluation) on Table 2.4 is used to 
evaluate the quality of text summaries by comparing them 
with reference summaries that are very prevalent in natural 
language processing (NLP) or computer vision.

Then Table III shows the confusion matrix where TP 
is True Positive, FP is False Positive, TN is True Negative, 
and FP is False Negative. In addition to evaluating the 
performance of the classification model, the confusion 
matrix can evaluate the results of translation on the sign 
language of the research, especially in the evaluation of 
recall performance or sensitivity, precision, and F1-score 
which can be a reference for accuracy in the evaluation of 
the generated text. True Positive (TP) indicates the actual 
positive value that is correctly predicted as positive by the 
model. True Negative (TN) indicates the actual negative 
value that is correctly predicted as negative by the model. 
False Positive (FP) indicates the actual negative value 

that is incorrectly predicted as positive by the model. And 
False Negative (FN) shows the actual positive value that is 
predicted to be wrong as negative by the model. 

Table III Table confusion matrix

Prediction

Truth
TP FN

FP TN

The causes of prediction errors include images 
having high similarity so that the model fails to recognize 
patterns. Prediction errors are also caused by unique 
features in the class, unclear images, and poor resolution 
so that unique features become blurry and the model cannot 
predict the model correctly.

The evaluation of ROUGE’s performance was 
carried out at a time after the translation of American Sign 
Language had been completed. Table IV is the formula 
applicable to the calculation of ROUGE. The ROUGE 
used is ROUGE-1 (for per-letter evaluation) and ROUGE L 
(Longest Common Subsequence) which is the longest row 
of references or candidates for writing.

ROUGE is an evaluation metric used to assess the 
quality of NLP (Natural Language Processing) tasks such 
as summarizing and translating text by machine learning. 
ROUGE measures the fit between a summary or translation 
generated by a model and a predetermined reference. 

This study uses ROUGE-1 to measure the unigram-
based conformity between the text generated by the model 
and the text stored in the dataset. Meanwhile, ROUGE-L 
measures the conformance based on the Longest Common 
Subsequence (LCS) between the text generated by the 
model and the text assigned to the dataset.

Table IV. Table used to ROUGE

Recall = (Number of matching n-grams) / (Number of 
n-grams in the Reference) (2.7)

Precision = (Number of matching n-grams) / (Number of 
n-grams in the Candidate) (2.8)

Rlcs = (LCS(X,Y)) / m (2.9)

Plcs = (LCS(X,Y)) / n (2.10)

Flcs = ((1+β2) Rlcs Plcs) / (Rlcs+β2 Plcs ) (2.11)

As for the explanation for each formula, ROUGE-L 
is represented by the existing formula “LCS” which stands 
for Longest Common Subsequence. 

Recall (formula 2.7) measures the number of 
unigrams of reference text that also appear in the model’s 
resulting text. Precision (formula 2.8) measures the amount 
of text that the model results also appears in the reference 
text. F1-score is the average recall and precision that shows 
the balance between the two. Meanwhile, Recall LCS 
(formula 2.9) measures how long the longest subsequence 
of the reference text also appears in the same order in 
the model’s resulting text. LCS precision (formula 2.10) 
measures how long the longest subsequence of the model’s 
resulting text also appears in the same order in the reference 
text. And the F1-score LCS is a linear average between 
the recall LCS and the precision of the LCS indicating the 
balance between the two.
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2.5 Proposed Method of American Sign Language 
Translation

Figure 3 shows that there are two parts to testing the 
model. The first part is a performance evaluation that results 
in an evaluation of the metrics of accuracy, precision, 
sensitivity, specificity, F1-score, error, and ROUGE. The 
second part is real-time data testing using a camera. The 
program used is a python program with the Pycharm 
platform. The program will translate American Sign 
Language according to the class, then display the results on 
the screen. The results of these two parts will be taken and 
conclusions will be drawn. 

 
Figure 3. Proposed Method of American Sign Language Translation

Figure 3 is a proposed method that is summarized 
into six general stages that represent all the processes in this 
study.

• Train data on the available datasets. The processed 
dataset is 8,700 datasets with 29 classes consisting of 
alphabet letters and additional dels (Delete), nothing, 
and space. 

• Dataset adjustment to the DenseNet201 and 
DenseNet201 PyTorch architectures used or called 
preprocessing. The dataset is adjusted to the running 
program at epoch 10, batch size 32, the dataset is 
adjusted to a size of 200 x 200 pixels with a range of 
0 – 255 to 0.1. with variable ‘A’ fixed for class 1, ‘B’ 
for class 2, and so on.

• The results of preprocessing the running model are 
stored for the next stage, namely testing the model 
(number 4), and evaluating performance (number 6).

• The model test is carried out by translating hand sign 
language in real-time. To make predictions using 
openCV. program has been set up so that pressing the 
e keyboard to perform the ROUGE evaluation, the p 
keyboard to perform the prediction and the q keyboard 
to exit the American Sign Language translation 
program using openCV.

• Based on the number 4, any predicted American Sign 
Language translation by pressing the p keyboard 
will appear in the openCV in the upper left corner. 
The purpose of the study is to display subtitles with 
examples “H A L O M I K” for testing with ROUGE 
evaluates each letter and then an example of “HALO” 
with no pauses to show ROUGE evaluates live 
translation per word.

• After pressing the e keyboard for evaluation and the 
q keyboard to exit the openCV program, the program 
evaluates the recall performance, precision, and F1-

score for the ROUGE-1 and ROUGE-L types. The 
results of this metric performance will be continued in 
the results and discussion in this study.

III. RESULT AND DISCUSSIONS

The DenseNet201 and DenseNet201 PyTorch 
architectural models have been created to translate American 
Sign Language by applying train-test split ratios of 90:10, 
80:20, 70:30, and 60:40. This study displays the best results 
on each model, namely DenseNet201 with a ratio of 90:10, 
and DenseNet201 PyTorch with a ratio of 70:30 as shown 
in Table V.
Table V. Comparison of Accuracy Results between the two Architecture 

models

Dataset 
Split

Accuracy 
DenseNet201

Accuracy 
DenseNet201 PyTorch  

90:10 0.98046 0.92874

80:20 0.95862 0.96552

70:30 0.95326 0.99732

60:40 0.95862 0.85374

Table V shows that the best DenseNet201 accuracy.

 result is at a 90:10 split, which is 0.98046 compared 
to the DenseNet201 PyTorch 90:10 split with an accuracy 
of 0.92874. Meanwhile, the best accuracy of DenseNet201 
Pytorch is at a split of 70.30, which is 0.99732 compared to 
DenseNet201 with an accuracy of 0.95862. However. The 
highest rated accuracy is on DenseNet201 Pytorch with an 
accuracy of 0.99732.

3.1 DenseNet201 Performance Evaluation Results
Based on Figure 3 which shows the confusion 

matrix in DenseNet201 at a ratio of 90:10, there are 7 out 
of 29 classes that have errors in predicting American Sign 
Language translation. The seven classes are classes G, J, L, 
R, U, V, and space. Class V is a class that has more prediction 
errors than the other six classes that are wrong. Class V 
predicts classes U and X as class V which are analyzed 
to be slightly similar in alphabetical terms. Language.

Figure 4. Confusion Matrix DenseNet201 architecture on 90:10 Dataset

To ensure that the accuracy of the model shows 
significant results, graphs are created during data 
preprocessing. This is done by tuning the parameters of 
batch 32 and epoch 10. 

Figure 5. DenseNet201 Accuracy Metric Evaluation Graph 90:10 ratio
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Figure 5 shows the accuracy evaluation metric of 
DenseNet201 with a ratio of 90:10. The training results 
showed high average results compared to the expected 
validation.

Figure 6. DenseNet201 Loss Metric Evaluation Graph 90:10 ratio

Figure 6 show the results of the graph where the 
training results are above the average validation value for 
accuracy, and show a slight loss. It can be analyzed that the 
DenseNet201 model should be able to translate American 
Sign Language accurately.  Table VI is a table for the results 
of the evaluation of architectural performance with an 
approach to all classes that have been created.
Table VI. Results of DenseNet201 Architecture Performance Evaluation 

on DenseNet201 90:10
Class Accuracy Precision Sensitivity F1-Score Specificity Error

A 1.00000 1.00000 1.00000 1.00000 1.00000 0.00000

B 0.99885 0.96774 1.00000 0.98361 0.99881 0.00115

C 1.00000 1.00000 1.00000 1.00000 1.00000 0.00000

D 1.00000 1.00000 1.00000 1.00000 1.00000 0.00000

E 1.00000 1.00000 1.00000 1.00000 1.00000 0.00000

F 1.00000 1.00000 1.00000 1.00000 1.00000 0.00000

G 0.99885 1.00000 0.96667 0.98305 1.00000 0.00115

H 0.99885 0.96774 1.00000 0.98361 0.99881 0.00115

I 0.99885 0.96774 1.00000 0.98361 0.99881 0.00115

J 0.99885 1.00000 0.96667 0.98305 1.00000 0.00115

K 1.00000 1.00000 1.00000 1.00000 1.00000 0.00000

L 0.99885 1.00000 0.96667 0.98305 1.00000 0.00115

M 1.00000 1.00000 1.00000 1.00000 1.00000 0.00000

N 1.00000 1.00000 1.00000 1.00000 1.00000 0.00000

O 1.00000 1.00000 1.00000 1.00000 1.00000 0.00000

P 1.00000 1.00000 1.00000 1.00000 1.00000 0.00000

Q 1.00000 1.00000 1.00000 1.00000 1.00000 0.00000

R 0.99655 1.00000 0.90000 0.94737 1.00000 0.00345

S 0.99885 0.96774 1.00000 0.98361 0.99881 0.00115

T 0.99885 0.96774 1.00000 0.98361 0.99881 0.00115

U 0.99540 0.96429 0.90000 0.93103 0.99881 0.00460

V 0.98966 0.92000 0.76667 0.83636 0.99762 0.01034

W 1.00000 1.00000 1.00000 1.00000 1.00000 0.00000

X 0.99195 0.81081 1.00000 0.89552 0.99167 0.00805

Y 0.99885 0.96774 1.00000 0.98361 0.99881 0.00115

Z 1.00000 1.00000 1.00000 1.00000 1.00000 0.00000

del 0.99885 0.96774 1.00000 0.98361 0.99881 0.00115

nothing 1.00000 1.00000 1.00000 1.00000 1.00000 0.00000

space 0.99885 1.00000 0.96667 0.98305 1.00000 0.00115

Average 0.98046 0.98170 0.98046 0.98027 0.99930 0.01954

Based on Table VI, the average architectural 
performance evaluation was obtained with an accuracy 
of 0.98046, precision of 0.98170, sensitivity of 0.98046, 
specificity of 0.99930, F1-score of 0.98027, and error of 
0.01954.
3.2 DenseNet201 PyTorch Performance Evaluation 
Results

Unlike the previous DenseNet201 which got the 
best performance evaluation results at a ratio of 90:10, in 
DenseNet201 PyTorch got the best performance evaluation 
results at a ratio of 70:30. Of the 8,700 datasets, this study 
uses 6,090 RGB image datasets as training data and another 
2,610 as evaluation data to produce model performance. 
Tuning parameters are still the same as DenseNet201, 
namely batch size 32 and epoch 10.

Figure 7. Confusion Matrix architecture DenseNet201 PyTorch 
at 70:30 Dataset

Figure 7 shows that there are only 3 classes where 
mistakes occurred, namely classes T, V, and W. class W 
showed the most erroneous results but no more errors 
than the previous DenseNet201 ratio of 90:10. Based on 
this, it can be analyzed that class W has a mistake so that 
it translates class was class K and V. and as is known, the 
letter W has a closeness or similarity to class V. Likewise, 
other prediction errors in the letter T that mispredict T with 
S and X and the letter V that mispredict V with the letter X.

Figure 8. DenseNet201 PyTorch Accuracy Metric Evaluation 
Graph 70:30 ratio

Figure 8 shows a performance evaluation metric with 
high validation, but also shows balanced training results. 
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Based on Figure 8, DenseNet201 PyTorch shows high 
validation to show the accuracy results that a model should 
achieve. In contrast to the previous DenseNet201 which 
tended to go up and down or was called unstable. However, 
DenseNet201’s 70:30 ratio showed stable training results in 
the fourth epoch.
Table VII. Results of DenseNet201 Architecture Performance Evaluation 

on DenseNet201 PyTorch rasio 70:30
Class Accuracy Precision Sensitivity F1-Score Specificity Error

A 1.00000 1.00000 1.00000 1.00000 1.00000 0.00000

B 1.00000 1.00000 1.00000 1.00000 1.00000 0.00000

C 1.00000 1.00000 1.00000 1.00000 1.00000 0.00000

D 1.00000 1.00000 1.00000 1.00000 1.00000 0.00000

E 1.00000 1.00000 1.00000 1.00000 1.00000 0.00000

F 1.00000 1.00000 1.00000 1.00000 1.00000 0.00000

G 1.00000 1.00000 1.00000 1.00000 1.00000 0.00000

H 1.00000 1.00000 1.00000 1.00000 1.00000 0.00000

I 1.00000 1.00000 1.00000 1.00000 1.00000 0.00000

J 1.00000 1.00000 1.00000 1.00000 1.00000 0.00000

K 0.99962 0.98901 1.00000 0.99448 0.99960 0.00038

L 1.00000 1.00000 1.00000 1.00000 1.00000 0.00000

M 1.00000 1.00000 1.00000 1.00000 1.00000 0.00000

N 1.00000 1.00000 1.00000 1.00000 1.00000 0.00000

O 1.00000 1.00000 1.00000 1.00000 1.00000 0.00000

P 1.00000 1.00000 1.00000 1.00000 1.00000 0.00000

Q 1.00000 1.00000 1.00000 1.00000 1.00000 0.00000

R 1.00000 1.00000 1.00000 1.00000 1.00000 0.00000

S 0.99962 0.98901 1.00000 0.99448 0.99960 0.00038

T 0.99923 1.00000 0.97778 0.98876 1.00000 0.00077

U 1.00000 1.00000 1.00000 1.00000 1.00000 0.00000

V 0.99847 0.96739 0.98889 0.97802 0.99881 0.00153

W 0.99847 1.00000 0.95556 0.97727 1.00000 0.00153

X 0.99923 0.97826 1.00000 0.98901 0.99921 0.00077

Y 1.00000 1.00000 1.00000 1.00000 1.00000 0.00000

Z 1.00000 1.00000 1.00000 1.00000 1.00000 0.00000

del 1.00000 1.00000 1.00000 1.00000 1.00000 0.00000

nothing 1.00000 1.00000 1.00000 1.00000 1.00000 0.00000

space 1.00000 1.00000 1.00000 1.00000 1.00000 0.00000

Average 0.99732 0.99737 0.99732 0.99731 0.99990 0.00268

Figure 9. DenseNet201 PyTorch Loss Metric Evaluation Graph 
70:30 ratio

Based on Figure 9, Densenet201 Pytorch has almost 
no loss, as Figure 9 tends to have very high accuracy. This 
shows that between very high accuracy results and very low 
loss values show balanced results.

Table VII, the performance results for the 
DenseNet201 PyTorch architecture model with accuracy 
of 0.99732, precision of 0.99737, sensitivity of 0.99732, 
specificity of 0.99990, F1-score of 0.99731, and error of 
0.00268 were obtained. This shows that the DenseNet201 
Pytorch with a 70:30 ratio is superior to the DenseNet201 
architecture with a 90:10 ratio, especially in the ratio of the 
number of classes that can be predicted precisely.

3.3 Results of the Performance Evaluation of American 
Sign Language Translation

Next is to test the model that has been made with 
American Sign Language translation in real time. Based 
on Table VIII, the model was successfully predicted and 
displayed on the monitor. The shooting on Table 2.8 was 
carried out in a closed room with a blue background, using 
a device camera whose results were taken in real-time. The 
hand gestures demonstrated are in accordance with the 
rules that apply to the use of American Sign Language. Live 
camera translates American Sign Language in the form of 
subtitles.

Table VIII. Results of American Sign Language Translation in “HALO 
MIK” Hand Gestures

Hand Gestures Word & Prediction 
Results

H = Q

A = E

L = Y

O = O
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Hand Gestures Word & Prediction 
Results

Space = Space

M = S

I = T

K = V

The limitation and challenge in this section is 
that the model successfully translates American Sign 
Language, even though it has not been predicted correctly. 
This is evidenced by the results of the evaluation of the 
performance of American Sign Language translation that 
has been successfully carried out and displays subtitles 
on the monitor screen. Based on Table VIII, the correctly 
translated American Sign Language is class O and class 
space, while there are other errors in translating American 
Sign Language.

Table IX. Results of ROUGE’s Performance Evaluation on American 
Sign Language Translation

Evaluation Precision Recall 
(Sensitivity) F1-score

ROUGE-1 0.14286 0.14286 0.14286

ROUGE-L 0.14286 0.14286 0.14286

Table IX, the performance evaluation results of 
ROUGE-1 are the same as ROUGE-L, which both show 
results with a precision of 0.14286, Recall 0.14286, and 
F1-score 0.14286. A precision of 0.14286 indicates that the 
translation has measured the number of model-generated 
texts that appear in the prediction text by one letter (0.14286). 
Recall 0.14286 indicates that the translation has measured 
the amount of reference text that also appears in the model’s 
resulting text, which in this case is equal to 0.14286. and 
F1-score shows the average recall and precision results 
where both produce the same evaluation value.

The study has been conducted as the results of the 
translation of American Sign Language in Table VIII and 
the evaluation of ROUGE performance in Table IX. The 
program is made with a space break for each letter in the 
subtitle so that the accuracy produced is in accordance with 
the expected letter (goal). 

Table X. Results of American Sign Language Translation in “HALO” 
Hand Gestures

Hand Gestures Word & Prediction 
Results

H = H

A = A

L = G

O = O

In another example, Table X shows fairly accurate 
results, although there is still a mistake in the letter L that 
translates the letter L as G. The study was also carried out, 
but did not take the ROUGE evaluation because the result 
was 0 (zero), because the subtitles did not meet the goal. This 
is because the expected prediction results are different from 
the expected goals in the model. In addition, with a green 
background and sufficient lighting, it turns out to affect the 
results significantly, although there are still mistakes in the 
program.

3.4 Discussion
Based on the results of the entire research process, 

the DenseNet201 PyTorch architecture model with a 70:30 
ratio obtained performance evaluation results with an 
accuracy of 0.99732 (99.73%) while DenseNet201 had a 
90:10 ratio of 0.98046 (98.05%). The advantages of the 
DenseNet201 Pytorch Model with a 70:30 ratio can be seen 
in the results of the confusion matrix which has a slight 
class prediction error compared to the DenseNet201 Model 
with a ratio of 90:10. In detail, DenseNet201 PyTorch 70:30 
ratio obtained performance evaluation results with accuracy 
of 0.99732, precision 0.99737, recall (sensitivity) 0.99732, 
specificity 0.99990, F1-score 0.99731, and error 0.00268.
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Then, the results of American Sign Language 
translation have been successfully applied with the 
architectural model that has been made. However, there is 
still confusion in the translation of American Sign Language. 
There are several factors that cause confusion in American 
Sign Language translation. First, it is caused by a lack of 
lighting when shooting using a camera. Second, the limited 
camera resolution causes blur in the results of the American 
Sign Language translation. Third, because the dataset used 
is limited, there is a lack of model references for translating 
American Sign Language. 

In addition, the significant difference between 
datasets and American Sign Language in real-time was very 
influential in this study. Both DenseNet201 with a 90:10 
ratio and DenseNet201 PyTorch with a 70:30 ratio get the 
same ROUGE results, both ROUGE-1 and ROUGE-L, 
namely precision 0.14286, recall (sensitivity) 0.14286, and 
F1-score 0.14286.

Overall, this study still shows limitations that can 
be used as the main reference to be improved in future 
research. First, this study used 8,700 out of 87,000 datasets 
from kaggle, and as American Sign Language develops, 
an increase in the number of datasets is very likely. The 
reduction of the dataset aims to speed up research where 
using 87,000 with limited devices can take twenty-four 
hours for one epoch or more. Second, the epoch applied is 
ten out of a hundred due to the limited research time. Epoch 
is the process of training on a convolutional neural network 
for one round. It is hoped that future research can apply 
a larger number of epochs to get optimal results. Third, 
the difference in the dataset in Kaggle to American Sign 
Language in real time. Further research is expected to create 
a dataset with more references, such as using red, green, or 
blue backgrounds, dark, dim, well-lit, and dazzling, and the 
clarity or blurry of the images to be used as datasets also 
affect the results of future research.

IV. CONCLUSION

The research on American Sign Language 
translation to display subtitles has obtained the best model 
of DenseNet201 PyTorch architecture with a ratio of 70:30 
with an accuracy of 0.99732, a precision of 0.99737, a recall 
(sensitivity) of 0.99732, a specificity of 0.99990, an F1-
score of 0.99731, and an error of 0.00268.  Meanwhile, the 
results of the American translation were successfully carried 
out and the performance evaluation of ROUGE-1 and 
ROUGE-L with a precision of 0.14286, Recall (sensitivity) 
0.14286, and F1-score 0.14286. 

The results of the evaluation of the performance 
of American Sign Language that show high accuracy 
results have an impact on future research to use the same 
architectural model, or to use another architectural model 
with the same or better performance evaluation results. The 
better the results of American Sign Language translation, 
the more impactful it will have on the implementation of 
American Sign Language translation applied around the 
world. This has also had an impact on the technological 

advances that have developed against other similar studies, 
such as the translation of facial cues or even body sign 
language.

Future work for this research is expected to use more 
and better datasets, because datasets are very important so 
that the model can translate American Sign Language better. 
Furthermore, the appearance of subtitles is expected to be 
continued to the next level, such as being able to capture 
American Sign Language in various environments that have 
complex situations and conditions. It is hoped that American 
Sign Language translation will get more accurate real-time 
results so that the communication process between users 
becomes easier and without certain limitations.
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