
Copyright © 2024

e-ISSN: 2686-2573
DOI: 10.21512/emacsjournal.v6i3.11904

163

 JURNAL EMACS

(Engineering, MAthematics and Computer Science) Vol.6 No.3 September 2024: 163-172

American Sign Language Translation
To Display the Text (Subtitles)

Using a Convolutional Neural Network

Muhammad Fajar Ramadhan1*, Samsuryadi2,
Anggina Primanita3

1-3 Master of Computer Science, Faculty of Computer Science,
Sriwijaya University,

Palembang, Indonesia 30128
09012682226005@student.unsri.ac.id; samsuryadi@unsri.ac.id;

anggina.primanita@ilkom.unsri.ac.id

*Correspondence: 09012682226005@student.unsri.ac.id

Abstract - Sign language is a harmonious combination of
hand gestures, postures, and facial expressions. One of the
most used and also the most researched Sign Language
is American Sign Language (ASL) because it is easier
to implement and also more common to apply on a daily
basis. More and more research related to American Sign
Language aims to make it easier for the speech impaired
to communicate with other normal people. Now, American
Sign Language research is starting to refer to the vision
of computers so that everyone in the world can easily
understand American Sign Language through machine
learning. Technology continues to develop sign language
translation, especially American Sign Language using
the Convolutional Neural Network. This study uses the
Densenet201 and DenseNet201 PyTorch architectures
to translate American Sign Language, then display the
translation into written form on a monitor screen. There
are 4 comparisons of data splits, namely 90:10, 80:20,
70:30, and 60:30. The results showed the best results on
DenseNet201 PyTorch in the train-test dataset comparison
of 70:30 with an accuracy of 0.99732, precision of 0.99737,
recall (sensitivity) of 0.99732, specificity of 0.99990, F1-
score of 0.99731, and error of 0.00268. The results of the
translation of American Sign Language into written form
were successfully carried out by performance evaluation
using ROUGE-1 and ROUGE-L resulting in a precision of
0.14286, Recall (sensitivity) 0.14286, and F1-score. The
more precise and sensitive the ROUGE results, the more
accurate the real-time sign language translation will be.

Keywords: American Sign Language; Translation;
Subtitles; DenseNet20; DenseNet201 PyTorch

I. INTRODUCTION

Sign language became a colloquial language for
people who were speechless. Previous researchers used
sign language to communicate with people with disabilities.
Sign language has always been a challenge until it finally
becomes the language used in conversations with people in
general (Delpreto et al., 2022; Malakan, 2021).

Problems of deafness or disability can occur
from birth, or caused by an accident so that they cannot
communicate properly. On this basis, many researchers are
interested in overcoming or even treating deafness until
now (Sensuse et al., 2022; Wei et al., 2023).

Previous research that has focused on the most about
deafness is in the fields of health (Huang & Xia, 2020),
social (Xu et al., 2023), and education (Al-Fraihat et al.,
2020). Recommendations from this field show that the
technology field is becoming very effective and relevant
because technology is always experiencing development and
massive around the world (Sundar & Bagyammal, 2022).

One of research (Marjusalinah et al., 2021) has
succeeded in classifying American sign language finger
spelling with very high accuracy so that computers can
recognize American sign language. This research should be
continued to the next stage, which is to display the writing
on the monitor as previously classified. This study uses
DenseNet121 as one of the convolutional Neural Network
architectures used.

Among the sign languages that are growing in the
world, American sign language is one of the many sign
languages used around the world (Gurbuz, 2020). One of

164 JURNAL EMACS (Engineering, MAthematics and Computer Science) Vol.6 No.3 September 2024: 163-172

the advantages of this sign language is that its use is from
local to foreign, there are also not many varieties so it is
easy to remember (Abdullahi & Chamnongthai, 2022)
recognition of similar ASL words confused translation
algorithms, which lead to misclassification. In this paper,
based on fast fisher vector (FFV).

Meanwhile, another researcher (Lu & Chuang,
2022) researched American Sign Language as a method
for taking pictures and generating letters with machine
learning. Machine learning has produced a wide variety of
translations into other languages more accurately.

Over time, American Sign Language research has
evolved into the application of deep learning. However,
at the beginning of its development (Zhu et al., 2020),
the introduction of American Sign Language using deep
learning faced challenges regarding the need for an optimal
feature extraction and pre-processing process, which
required efficient time and more accurate translation.

Meanwhile, similar research (Xu et al., 2023) applies
deep learning methods to image recognition and proves that
deep learning methods continue to evolve to become more
effective along with deep machine learning. The more data
used and the training carried out, the more accurate the
expected results will be.

One of the deep learning that is still used and continues
to grow today is the Convolutional Neural Network (CNN)
(Huang et al., 2017). CNN has become one of the many
solutions in dealing with the problem of digital imagery,
especially in American Sign Language translation. CNNs
have a framework that has been conceptualized in such a
way that the weight division, scaling, and displacement are
relatively the same.

The development of American Sign Language
translation technology, by using CNN in translation, has
facilitated research in improving accessibility for people
with disabilities who use American Sign Language as their
primary language. Subtitles are very useful so that everyone
can use them to learn American Sign Language (Prajwal et
al., 2022)which has a very different signing alphabet (e.g.,
two-handed instead of one-handed.

DenseNet201 and DenseNet201 PyTorch is one of
the CNN architectures that is still popular since 2014 until
now in digital image processing or RGB pixels (Beal, 2021;
Huang et al., 2017). This research is expected to produce
high accuracy evaluation metric results so that it can
accurately translate between actual data and prediction data.

So, this study intends to implement a convolutional
neural network to display letters that are arranged into
words or sentences so that they are worthy of being called
subtitles. The purpose of the study was to show the results
of data processing on the tested model that DenseNet201
PyTorch has the potential to be developed in American
Sign Language translation because it has the best results
in certain data splits. This is shown in the comparison of
accuracy between the two models. And this study shows
the success of the model displaying writing. It is hoped that
it can be developed in future research for better American

Sign Language translation results.

II. METHODS

This research starts from the previous research that
has been summarized in the introduction. Furthermore,
it will be explained starting from data preparation to
evaluating the performance of the Convolutional Neural
Network and American Sign Language translation in the
form of subtitles.

2.1 Dataset
The dataset used comes from kaggle.com/

grassknoted/asl-alphabet. The website contains images of
hands demonstrating American Sign Language by class.
Each class contains 3,000 images, making the total dataset
available as many as 87,000. The class in question consists
of 29 classes, which consist of letters in the alphabet, namely
from the letters A to Z, plus the functions del (delete),
nothing, and space.

This study uses 300 data for each class, so that a
total of 8,700 data is ready to be processed for training and
testing. This study also applies the 29 classes mentioned
earlier.

2.2 DenseNet Architecture
As mentioned in the introduction, the method used

is to use a Convolutional Neural Network. A convolutional
neural network is a convolutional network that operates both
linearly and non-linear (Ali & Kim, 2020). There are many
types and architectures of convolutional neural networks,
but this study uses DenseNet.

This study specifically uses DenseNet for three
reasons. First, DenseNet has been proven to show high
accuracy in previous studies (Marjusalinah et al., 2021)
with an accuracy evaluation result of 0.95. Second, since
2016 since its first appearance, DenseNet is still feasible
to use and is one of the architectures that continues to be
developed for image research (Liang et al., 2022). Third,
DenseNet architecture testing has been successful by using
various objects, such as horses (Huang et al., 2017), cars,
and palm patterns in the context of hand sign language
(Abdullahi & Chamnongthai, 2022)recognition of similar
ASL words confused translation algorithms, which lead to
misclassification. In this paper, based on fast fisher vector
(FFV).

DenseNet (Qin et al., 2023) is a layered architecture
with specific map features. Map features are arranged like
interconnected chains, so data will pass through all layers
without exception. The map feature bypasses the batch
normalization, ReLU, and 3x3 convolution functions within
DenseNet. The resulting output will be repeated until the
most optimal result is obtained (Kouvakis et al., 2024).

DenseNet introduces a solid block that takes the
output based on the previous convolutional layer so that it
produces an output feature that is then passed on to the next
convolutional layer. In Figure 1, the convolutional layer is
represented by x0, x1, x2, x3, and x4 with the input being

165American Sign Language Translation To Display the Text… (Muhammad Fajar Ramadhan, et. al)

an image obtained from the dataset. Meanwhile, H1, H2,
H3, and H4 have Batch Normalization (BN), rectified linear
units (ReLU), Pooling, and Convolution (Conv) processes.
This happens gradually until it produces the prediction
expected by the research.

Figure 1. DenseNet Architecture

Based on Figure 1, there are five layer blocks where
each layer has its own feature-maps process as input.
Between the two layers, there is a convolution and pooling
process with details like Table I (Huang et al., 2017)more
accurate, and efficient to train if they contain shorter
connections between layers close to the input and those close
to the output. In this paper, we embrace this observation and
introduce the Dense Convolutional Network (DenseNet.

In this study, the DenseNet201 architecture use
DenseNet201 and DenseNet201 PyTorch. It is called
DenseNet201 because it has a number and size of 201 filters.
Meanwhile, it is called PyTorch because it implements
TorchVision on the DenseNet201 architecture. What
distinguishes them is the library used (Huang et al., 2017).

In more detail, DenseNet201 has a relatively similar
Output Size pattern. Starting from the convolution layer
with an output size of 112 x 112. After the pooling process,
the output size is compressed to 56 x 56 with 3 x 3 max
pool and 2 strides. Stride can be said to be a filter shift.
The process continues in the first Block Dense stage with
a convolutional 1 x 1 and a transition layer with a 2 x 2
pooling average and stride 2. Pooling is also often called
subsampling which is a reduction in the size of the matrix.
Generally, what is often used is average pooling by taking
the average convolutional value, while max pooling takes
the maximum convolutional value (Bantupalli, 2019).

Table I. DenseNet201 Architecture

Layer name Output size Number and size of
filters

Convolution layer 112x112 7x7 conv, stride 2

Pooling layer 56x56 3x3 max pool, stride 2

Block Dense (1) 56x56 1x1 conv

Transition layer
(1)

56x56 [(1x1 conv) ¦ (3x3
conv)] x6

28x28 2x2 avg pool, stride 2

Block Dense (2) 28x28 [(1x1 conv) ¦ (3x3
conv)] x12

Transition layer
(2)

28x28 1x1 conv

14x14 2x2 avg pool, stride 2

Block Dense (3) 14x14 [(1x1 conv) ¦ (3x3
conv)] x48

Transition layer
(3)

14x14 1x1 conv

7x7 2x2 avg pool, stride 2

Block Dense (4) 7x7 [(1x1 conv) ¦ (3x3
conv)] x32

Transition layer
1x1 7x7 global average pool

1000D Fully Connected,
Softmax

DenseNet201 Pytorch is an application of the
DenseNet201 architecture based on PyTorch. Pytorch itself
is a deep learning framework used to train and construct
convolutional neural network models. DenseNet201
PyTorch has advantages such as reducing losses in
gradient problems that DenseNet does not have in
general, strengthening feature propagation by stimulating
feature maps more optimally, and reducing the number of
parameters substantially where more effective parameters
for accuracy are maintained.

2.3 Preprocessing data
The dataset of 8,700 and 300 data for each class, the

DenseNet201 and DenseNet201 PyTorch models will be
train-tested with a ratio of 90:10, 80:20, 70:30, and 60:40,
respectively. However, in the results and discussion, 1 best
model from DenseNet201 and DenseNet201 PyTorch will
be selected for the results of the confusion matrix (Saleh et
al., 2024).

In this data preprocessing, the dataset is processed
in such a way that the size is adjusted to 200x200 pixels
of RGB image (Red, Green, Blue). The pixel range that
should be 0-255 has been simplified to 0-1, making the
initialization process faster and more efficient.

Figure 2. RGB Image

Figure 2: Image of RGB image in RGB format, screen
image, and additive colors. RGB format for subtractive
colors and colors not related to CYMK technology (cyan,
magenta, yellow, and key (black) are subtractive colors that
are available for unconventional colors, the most concise
colors, the most intense colors, and the most important
colors are attractive colors.

166 JURNAL EMACS (Engineering, MAthematics and Computer Science) Vol.6 No.3 September 2024: 163-172

Classes that contain American Sign Language data
in alphabets will be labeled so that they match between
classes to labels. In this study, class 0 was labeled A, class 1
was labeled B, and so on. Then the last 3 classes in order are
del (delete) for class 26, nothing for class 27, and space for
class 28. Thus, the classes used are as many as 29 classes.

2.4 Performance Metric Calculation
This study calculates the quality of translation

by paying attention to the evaluation of the accuracy
performance of each model with a certain comparison. The
parameters to be evaluated include accuracy, precision,
specifications, recal / sensitivity, F1-score, and error as
shown in Table II.

Table II. Formulas used for performance evaluation

Accuracy (A) = (TP+TN) / (TP+TN+FP+FN) (2.1)

Precision (P) = TP / (TP+FP) (2.2)

Recall (R) = TP / (TP+FN) (2.3)

S = TN / (TN + FP) (2.4)

F1 = 2 x (P x R) / (P + R) (2.5)

E = 1 - A (2.6)

The explanation of each performance evaluation in
question. Accuracy (formula 2.1) calculates the percentage
of correct predictions from the total predictions made by
the model to provide an overview of the overall model
performance. Precision (formula 2.2) is the ratio of correct
predictions to total True Positive and False Positive
predictions which is useful for reducing the number of
diagnoses. Recall (formula 2.3) is the sensitivity or ratio
of positive correct predictions to total positive data, which
is important when the prediction is wrong as negative to
minimize the number of incorrectly diagnosed negatives.
The specification (formula 2.4) is the ratio of negative correct
predictions to total actual negative data which helps identify
the model’s negative data precisely. F1-score (formula 2.5)
is a linear average between precision and sensitivity, so it
is very useful if there is a class imbalance in the dataset.
Errors (formula 2.6) are the number of prediction errors
made by the model to understand the areas where the model
needs improvement. And finally, ROUGE (Recall-Oriented
Understudy for Gisting Evaluation) on Table 2.4 is used to
evaluate the quality of text summaries by comparing them
with reference summaries that are very prevalent in natural
language processing (NLP) or computer vision.

Then Table III shows the confusion matrix where TP
is True Positive, FP is False Positive, TN is True Negative,
and FP is False Negative. In addition to evaluating the
performance of the classification model, the confusion
matrix can evaluate the results of translation on the sign
language of the research, especially in the evaluation of
recall performance or sensitivity, precision, and F1-score
which can be a reference for accuracy in the evaluation of
the generated text. True Positive (TP) indicates the actual
positive value that is correctly predicted as positive by the
model. True Negative (TN) indicates the actual negative
value that is correctly predicted as negative by the model.
False Positive (FP) indicates the actual negative value

that is incorrectly predicted as positive by the model. And
False Negative (FN) shows the actual positive value that is
predicted to be wrong as negative by the model.

Table III Table confusion matrix

Prediction

Truth
TP FN

FP TN

The causes of prediction errors include images
having high similarity so that the model fails to recognize
patterns. Prediction errors are also caused by unique
features in the class, unclear images, and poor resolution
so that unique features become blurry and the model cannot
predict the model correctly.

The evaluation of ROUGE’s performance was
carried out at a time after the translation of American Sign
Language had been completed. Table IV is the formula
applicable to the calculation of ROUGE. The ROUGE
used is ROUGE-1 (for per-letter evaluation) and ROUGE L
(Longest Common Subsequence) which is the longest row
of references or candidates for writing.

ROUGE is an evaluation metric used to assess the
quality of NLP (Natural Language Processing) tasks such
as summarizing and translating text by machine learning.
ROUGE measures the fit between a summary or translation
generated by a model and a predetermined reference.

This study uses ROUGE-1 to measure the unigram-
based conformity between the text generated by the model
and the text stored in the dataset. Meanwhile, ROUGE-L
measures the conformance based on the Longest Common
Subsequence (LCS) between the text generated by the
model and the text assigned to the dataset.

Table IV. Table used to ROUGE

Recall = (Number of matching n-grams) / (Number of
n-grams in the Reference) (2.7)

Precision = (Number of matching n-grams) / (Number of
n-grams in the Candidate) (2.8)

Rlcs = (LCS(X,Y)) / m (2.9)

Plcs = (LCS(X,Y)) / n (2.10)

Flcs = ((1+β2) Rlcs Plcs) / (Rlcs+β2 Plcs) (2.11)

As for the explanation for each formula, ROUGE-L
is represented by the existing formula “LCS” which stands
for Longest Common Subsequence.

Recall (formula 2.7) measures the number of
unigrams of reference text that also appear in the model’s
resulting text. Precision (formula 2.8) measures the amount
of text that the model results also appears in the reference
text. F1-score is the average recall and precision that shows
the balance between the two. Meanwhile, Recall LCS
(formula 2.9) measures how long the longest subsequence
of the reference text also appears in the same order in
the model’s resulting text. LCS precision (formula 2.10)
measures how long the longest subsequence of the model’s
resulting text also appears in the same order in the reference
text. And the F1-score LCS is a linear average between
the recall LCS and the precision of the LCS indicating the
balance between the two.

167American Sign Language Translation To Display the Text… (Muhammad Fajar Ramadhan, et. al)

2.5 Proposed Method of American Sign Language
Translation

Figure 3 shows that there are two parts to testing the
model. The first part is a performance evaluation that results
in an evaluation of the metrics of accuracy, precision,
sensitivity, specificity, F1-score, error, and ROUGE. The
second part is real-time data testing using a camera. The
program used is a python program with the Pycharm
platform. The program will translate American Sign
Language according to the class, then display the results on
the screen. The results of these two parts will be taken and
conclusions will be drawn.

Figure 3. Proposed Method of American Sign Language Translation

Figure 3 is a proposed method that is summarized
into six general stages that represent all the processes in this
study.

• Train data on the available datasets. The processed
dataset is 8,700 datasets with 29 classes consisting of
alphabet letters and additional dels (Delete), nothing,
and space.

• Dataset adjustment to the DenseNet201 and
DenseNet201 PyTorch architectures used or called
preprocessing. The dataset is adjusted to the running
program at epoch 10, batch size 32, the dataset is
adjusted to a size of 200 x 200 pixels with a range of
0 – 255 to 0.1. with variable ‘A’ fixed for class 1, ‘B’
for class 2, and so on.

• The results of preprocessing the running model are
stored for the next stage, namely testing the model
(number 4), and evaluating performance (number 6).

• The model test is carried out by translating hand sign
language in real-time. To make predictions using
openCV. program has been set up so that pressing the
e keyboard to perform the ROUGE evaluation, the p
keyboard to perform the prediction and the q keyboard
to exit the American Sign Language translation
program using openCV.

• Based on the number 4, any predicted American Sign
Language translation by pressing the p keyboard
will appear in the openCV in the upper left corner.
The purpose of the study is to display subtitles with
examples “H A L O M I K” for testing with ROUGE
evaluates each letter and then an example of “HALO”
with no pauses to show ROUGE evaluates live
translation per word.

• After pressing the e keyboard for evaluation and the
q keyboard to exit the openCV program, the program
evaluates the recall performance, precision, and F1-

score for the ROUGE-1 and ROUGE-L types. The
results of this metric performance will be continued in
the results and discussion in this study.

III. RESULT AND DISCUSSIONS

The DenseNet201 and DenseNet201 PyTorch
architectural models have been created to translate American
Sign Language by applying train-test split ratios of 90:10,
80:20, 70:30, and 60:40. This study displays the best results
on each model, namely DenseNet201 with a ratio of 90:10,
and DenseNet201 PyTorch with a ratio of 70:30 as shown
in Table V.
Table V. Comparison of Accuracy Results between the two Architecture

models

Dataset
Split

Accuracy
DenseNet201

Accuracy
DenseNet201 PyTorch

90:10 0.98046 0.92874

80:20 0.95862 0.96552

70:30 0.95326 0.99732

60:40 0.95862 0.85374

Table V shows that the best DenseNet201 accuracy.

 result is at a 90:10 split, which is 0.98046 compared
to the DenseNet201 PyTorch 90:10 split with an accuracy
of 0.92874. Meanwhile, the best accuracy of DenseNet201
Pytorch is at a split of 70.30, which is 0.99732 compared to
DenseNet201 with an accuracy of 0.95862. However. The
highest rated accuracy is on DenseNet201 Pytorch with an
accuracy of 0.99732.

3.1 DenseNet201 Performance Evaluation Results
Based on Figure 3 which shows the confusion

matrix in DenseNet201 at a ratio of 90:10, there are 7 out
of 29 classes that have errors in predicting American Sign
Language translation. The seven classes are classes G, J, L,
R, U, V, and space. Class V is a class that has more prediction
errors than the other six classes that are wrong. Class V
predicts classes U and X as class V which are analyzed
to be slightly similar in alphabetical terms. Language.

Figure 4. Confusion Matrix DenseNet201 architecture on 90:10 Dataset

To ensure that the accuracy of the model shows
significant results, graphs are created during data
preprocessing. This is done by tuning the parameters of
batch 32 and epoch 10.

Figure 5. DenseNet201 Accuracy Metric Evaluation Graph 90:10 ratio

168 JURNAL EMACS (Engineering, MAthematics and Computer Science) Vol.6 No.3 September 2024: 163-172

Figure 5 shows the accuracy evaluation metric of
DenseNet201 with a ratio of 90:10. The training results
showed high average results compared to the expected
validation.

Figure 6. DenseNet201 Loss Metric Evaluation Graph 90:10 ratio

Figure 6 show the results of the graph where the
training results are above the average validation value for
accuracy, and show a slight loss. It can be analyzed that the
DenseNet201 model should be able to translate American
Sign Language accurately. Table VI is a table for the results
of the evaluation of architectural performance with an
approach to all classes that have been created.
Table VI. Results of DenseNet201 Architecture Performance Evaluation

on DenseNet201 90:10
Class Accuracy Precision Sensitivity F1-Score Specificity Error

A 1.00000 1.00000 1.00000 1.00000 1.00000 0.00000

B 0.99885 0.96774 1.00000 0.98361 0.99881 0.00115

C 1.00000 1.00000 1.00000 1.00000 1.00000 0.00000

D 1.00000 1.00000 1.00000 1.00000 1.00000 0.00000

E 1.00000 1.00000 1.00000 1.00000 1.00000 0.00000

F 1.00000 1.00000 1.00000 1.00000 1.00000 0.00000

G 0.99885 1.00000 0.96667 0.98305 1.00000 0.00115

H 0.99885 0.96774 1.00000 0.98361 0.99881 0.00115

I 0.99885 0.96774 1.00000 0.98361 0.99881 0.00115

J 0.99885 1.00000 0.96667 0.98305 1.00000 0.00115

K 1.00000 1.00000 1.00000 1.00000 1.00000 0.00000

L 0.99885 1.00000 0.96667 0.98305 1.00000 0.00115

M 1.00000 1.00000 1.00000 1.00000 1.00000 0.00000

N 1.00000 1.00000 1.00000 1.00000 1.00000 0.00000

O 1.00000 1.00000 1.00000 1.00000 1.00000 0.00000

P 1.00000 1.00000 1.00000 1.00000 1.00000 0.00000

Q 1.00000 1.00000 1.00000 1.00000 1.00000 0.00000

R 0.99655 1.00000 0.90000 0.94737 1.00000 0.00345

S 0.99885 0.96774 1.00000 0.98361 0.99881 0.00115

T 0.99885 0.96774 1.00000 0.98361 0.99881 0.00115

U 0.99540 0.96429 0.90000 0.93103 0.99881 0.00460

V 0.98966 0.92000 0.76667 0.83636 0.99762 0.01034

W 1.00000 1.00000 1.00000 1.00000 1.00000 0.00000

X 0.99195 0.81081 1.00000 0.89552 0.99167 0.00805

Y 0.99885 0.96774 1.00000 0.98361 0.99881 0.00115

Z 1.00000 1.00000 1.00000 1.00000 1.00000 0.00000

del 0.99885 0.96774 1.00000 0.98361 0.99881 0.00115

nothing 1.00000 1.00000 1.00000 1.00000 1.00000 0.00000

space 0.99885 1.00000 0.96667 0.98305 1.00000 0.00115

Average 0.98046 0.98170 0.98046 0.98027 0.99930 0.01954

Based on Table VI, the average architectural
performance evaluation was obtained with an accuracy
of 0.98046, precision of 0.98170, sensitivity of 0.98046,
specificity of 0.99930, F1-score of 0.98027, and error of
0.01954.
3.2 DenseNet201 PyTorch Performance Evaluation
Results

Unlike the previous DenseNet201 which got the
best performance evaluation results at a ratio of 90:10, in
DenseNet201 PyTorch got the best performance evaluation
results at a ratio of 70:30. Of the 8,700 datasets, this study
uses 6,090 RGB image datasets as training data and another
2,610 as evaluation data to produce model performance.
Tuning parameters are still the same as DenseNet201,
namely batch size 32 and epoch 10.

Figure 7. Confusion Matrix architecture DenseNet201 PyTorch
at 70:30 Dataset

Figure 7 shows that there are only 3 classes where
mistakes occurred, namely classes T, V, and W. class W
showed the most erroneous results but no more errors
than the previous DenseNet201 ratio of 90:10. Based on
this, it can be analyzed that class W has a mistake so that
it translates class was class K and V. and as is known, the
letter W has a closeness or similarity to class V. Likewise,
other prediction errors in the letter T that mispredict T with
S and X and the letter V that mispredict V with the letter X.

Figure 8. DenseNet201 PyTorch Accuracy Metric Evaluation
Graph 70:30 ratio

Figure 8 shows a performance evaluation metric with
high validation, but also shows balanced training results.

169American Sign Language Translation To Display the Text… (Muhammad Fajar Ramadhan, et. al)

Based on Figure 8, DenseNet201 PyTorch shows high
validation to show the accuracy results that a model should
achieve. In contrast to the previous DenseNet201 which
tended to go up and down or was called unstable. However,
DenseNet201’s 70:30 ratio showed stable training results in
the fourth epoch.
Table VII. Results of DenseNet201 Architecture Performance Evaluation

on DenseNet201 PyTorch rasio 70:30
Class Accuracy Precision Sensitivity F1-Score Specificity Error

A 1.00000 1.00000 1.00000 1.00000 1.00000 0.00000

B 1.00000 1.00000 1.00000 1.00000 1.00000 0.00000

C 1.00000 1.00000 1.00000 1.00000 1.00000 0.00000

D 1.00000 1.00000 1.00000 1.00000 1.00000 0.00000

E 1.00000 1.00000 1.00000 1.00000 1.00000 0.00000

F 1.00000 1.00000 1.00000 1.00000 1.00000 0.00000

G 1.00000 1.00000 1.00000 1.00000 1.00000 0.00000

H 1.00000 1.00000 1.00000 1.00000 1.00000 0.00000

I 1.00000 1.00000 1.00000 1.00000 1.00000 0.00000

J 1.00000 1.00000 1.00000 1.00000 1.00000 0.00000

K 0.99962 0.98901 1.00000 0.99448 0.99960 0.00038

L 1.00000 1.00000 1.00000 1.00000 1.00000 0.00000

M 1.00000 1.00000 1.00000 1.00000 1.00000 0.00000

N 1.00000 1.00000 1.00000 1.00000 1.00000 0.00000

O 1.00000 1.00000 1.00000 1.00000 1.00000 0.00000

P 1.00000 1.00000 1.00000 1.00000 1.00000 0.00000

Q 1.00000 1.00000 1.00000 1.00000 1.00000 0.00000

R 1.00000 1.00000 1.00000 1.00000 1.00000 0.00000

S 0.99962 0.98901 1.00000 0.99448 0.99960 0.00038

T 0.99923 1.00000 0.97778 0.98876 1.00000 0.00077

U 1.00000 1.00000 1.00000 1.00000 1.00000 0.00000

V 0.99847 0.96739 0.98889 0.97802 0.99881 0.00153

W 0.99847 1.00000 0.95556 0.97727 1.00000 0.00153

X 0.99923 0.97826 1.00000 0.98901 0.99921 0.00077

Y 1.00000 1.00000 1.00000 1.00000 1.00000 0.00000

Z 1.00000 1.00000 1.00000 1.00000 1.00000 0.00000

del 1.00000 1.00000 1.00000 1.00000 1.00000 0.00000

nothing 1.00000 1.00000 1.00000 1.00000 1.00000 0.00000

space 1.00000 1.00000 1.00000 1.00000 1.00000 0.00000

Average 0.99732 0.99737 0.99732 0.99731 0.99990 0.00268

Figure 9. DenseNet201 PyTorch Loss Metric Evaluation Graph
70:30 ratio

Based on Figure 9, Densenet201 Pytorch has almost
no loss, as Figure 9 tends to have very high accuracy. This
shows that between very high accuracy results and very low
loss values show balanced results.

Table VII, the performance results for the
DenseNet201 PyTorch architecture model with accuracy
of 0.99732, precision of 0.99737, sensitivity of 0.99732,
specificity of 0.99990, F1-score of 0.99731, and error of
0.00268 were obtained. This shows that the DenseNet201
Pytorch with a 70:30 ratio is superior to the DenseNet201
architecture with a 90:10 ratio, especially in the ratio of the
number of classes that can be predicted precisely.

3.3 Results of the Performance Evaluation of American
Sign Language Translation

Next is to test the model that has been made with
American Sign Language translation in real time. Based
on Table VIII, the model was successfully predicted and
displayed on the monitor. The shooting on Table 2.8 was
carried out in a closed room with a blue background, using
a device camera whose results were taken in real-time. The
hand gestures demonstrated are in accordance with the
rules that apply to the use of American Sign Language. Live
camera translates American Sign Language in the form of
subtitles.

Table VIII. Results of American Sign Language Translation in “HALO
MIK” Hand Gestures

Hand Gestures Word & Prediction
Results

H = Q

A = E

L = Y

O = O

170 JURNAL EMACS (Engineering, MAthematics and Computer Science) Vol.6 No.3 September 2024: 163-172

Hand Gestures Word & Prediction
Results

Space = Space

M = S

I = T

K = V

The limitation and challenge in this section is
that the model successfully translates American Sign
Language, even though it has not been predicted correctly.
This is evidenced by the results of the evaluation of the
performance of American Sign Language translation that
has been successfully carried out and displays subtitles
on the monitor screen. Based on Table VIII, the correctly
translated American Sign Language is class O and class
space, while there are other errors in translating American
Sign Language.

Table IX. Results of ROUGE’s Performance Evaluation on American
Sign Language Translation

Evaluation Precision Recall
(Sensitivity) F1-score

ROUGE-1 0.14286 0.14286 0.14286

ROUGE-L 0.14286 0.14286 0.14286

Table IX, the performance evaluation results of
ROUGE-1 are the same as ROUGE-L, which both show
results with a precision of 0.14286, Recall 0.14286, and
F1-score 0.14286. A precision of 0.14286 indicates that the
translation has measured the number of model-generated
texts that appear in the prediction text by one letter (0.14286).
Recall 0.14286 indicates that the translation has measured
the amount of reference text that also appears in the model’s
resulting text, which in this case is equal to 0.14286. and
F1-score shows the average recall and precision results
where both produce the same evaluation value.

The study has been conducted as the results of the
translation of American Sign Language in Table VIII and
the evaluation of ROUGE performance in Table IX. The
program is made with a space break for each letter in the
subtitle so that the accuracy produced is in accordance with
the expected letter (goal).

Table X. Results of American Sign Language Translation in “HALO”
Hand Gestures

Hand Gestures Word & Prediction
Results

H = H

A = A

L = G

O = O

In another example, Table X shows fairly accurate
results, although there is still a mistake in the letter L that
translates the letter L as G. The study was also carried out,
but did not take the ROUGE evaluation because the result
was 0 (zero), because the subtitles did not meet the goal. This
is because the expected prediction results are different from
the expected goals in the model. In addition, with a green
background and sufficient lighting, it turns out to affect the
results significantly, although there are still mistakes in the
program.

3.4 Discussion
Based on the results of the entire research process,

the DenseNet201 PyTorch architecture model with a 70:30
ratio obtained performance evaluation results with an
accuracy of 0.99732 (99.73%) while DenseNet201 had a
90:10 ratio of 0.98046 (98.05%). The advantages of the
DenseNet201 Pytorch Model with a 70:30 ratio can be seen
in the results of the confusion matrix which has a slight
class prediction error compared to the DenseNet201 Model
with a ratio of 90:10. In detail, DenseNet201 PyTorch 70:30
ratio obtained performance evaluation results with accuracy
of 0.99732, precision 0.99737, recall (sensitivity) 0.99732,
specificity 0.99990, F1-score 0.99731, and error 0.00268.

171American Sign Language Translation To Display the Text… (Muhammad Fajar Ramadhan, et. al)

Then, the results of American Sign Language
translation have been successfully applied with the
architectural model that has been made. However, there is
still confusion in the translation of American Sign Language.
There are several factors that cause confusion in American
Sign Language translation. First, it is caused by a lack of
lighting when shooting using a camera. Second, the limited
camera resolution causes blur in the results of the American
Sign Language translation. Third, because the dataset used
is limited, there is a lack of model references for translating
American Sign Language.

In addition, the significant difference between
datasets and American Sign Language in real-time was very
influential in this study. Both DenseNet201 with a 90:10
ratio and DenseNet201 PyTorch with a 70:30 ratio get the
same ROUGE results, both ROUGE-1 and ROUGE-L,
namely precision 0.14286, recall (sensitivity) 0.14286, and
F1-score 0.14286.

Overall, this study still shows limitations that can
be used as the main reference to be improved in future
research. First, this study used 8,700 out of 87,000 datasets
from kaggle, and as American Sign Language develops,
an increase in the number of datasets is very likely. The
reduction of the dataset aims to speed up research where
using 87,000 with limited devices can take twenty-four
hours for one epoch or more. Second, the epoch applied is
ten out of a hundred due to the limited research time. Epoch
is the process of training on a convolutional neural network
for one round. It is hoped that future research can apply
a larger number of epochs to get optimal results. Third,
the difference in the dataset in Kaggle to American Sign
Language in real time. Further research is expected to create
a dataset with more references, such as using red, green, or
blue backgrounds, dark, dim, well-lit, and dazzling, and the
clarity or blurry of the images to be used as datasets also
affect the results of future research.

IV. CONCLUSION

The research on American Sign Language
translation to display subtitles has obtained the best model
of DenseNet201 PyTorch architecture with a ratio of 70:30
with an accuracy of 0.99732, a precision of 0.99737, a recall
(sensitivity) of 0.99732, a specificity of 0.99990, an F1-
score of 0.99731, and an error of 0.00268. Meanwhile, the
results of the American translation were successfully carried
out and the performance evaluation of ROUGE-1 and
ROUGE-L with a precision of 0.14286, Recall (sensitivity)
0.14286, and F1-score 0.14286.

The results of the evaluation of the performance
of American Sign Language that show high accuracy
results have an impact on future research to use the same
architectural model, or to use another architectural model
with the same or better performance evaluation results. The
better the results of American Sign Language translation,
the more impactful it will have on the implementation of
American Sign Language translation applied around the
world. This has also had an impact on the technological

advances that have developed against other similar studies,
such as the translation of facial cues or even body sign
language.

Future work for this research is expected to use more
and better datasets, because datasets are very important so
that the model can translate American Sign Language better.
Furthermore, the appearance of subtitles is expected to be
continued to the next level, such as being able to capture
American Sign Language in various environments that have
complex situations and conditions. It is hoped that American
Sign Language translation will get more accurate real-time
results so that the communication process between users
becomes easier and without certain limitations.

REFERENCES

Abdullahi, S. B., & Chamnongthai, K. (2022). Ameri-
can Sign Language Words Recognition Us-
ing Spatiooral Prosodic and Angle Features: A
Sequential Learning Approach. IEEE Access,
10, 15911–15923. https://doi.org/10.1109/AC-
CESS.2022.3148132

Bantupalli, K. (2019). American Sign Language Recog-
nition using Deep Learning and Computer Vi-
sion. In Proceedings - 2018 IEEE International
Conference on Big Data, Big Data 2018 (pp.
4896–4899). https://doi.org/10.1109/BigDa-
ta.2018.8622141

Delpreto, J., Hughes, J., D’Aria, M., De Fazio, M., & Rus,
D. (2022). A Wearable Smart Glove and Its Ap-
plication of Pose and Gesture Detection to Sign
Language Classification. IEEE Robotics and Au-
tomation Letters, 7(4), 10589–10596. https://doi.
org/10.1109/LRA.2022.3191232

Gurbuz, S. Z. (2020). A linguistic perspective on radar
micro-doppler analysis of American sign lan-
guage. In 2020 IEEE International Radar Con-
ference, RADAR 2020 (pp. 232–237). https://doi.
org/10.1109/RADAR42522.2020.9114818

Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger,
K. Q. (2017). Densely connected convolutional
networks. Proceedings - 30th IEEE Conference
on Computer Vision and Pattern Recognition,
CVPR 2017, 2017-Janua, 2261–2269. https://
doi.org/10.1109/CVPR.2017.243

Kouvakis, V., Trevlakis, S. E., & Boulogeorgos, A. A. A.
(2024). Semantic Communications for Im-
age-Based Sign Language Transmission. IEEE
Open Journal of the Communications Society,
5(January), 1088–1100. https://doi.org/10.1109/
OJCOMS.2024.3360191

Malakan, Z. M. (2021). Classify, Detect and Tell: Real-Time
American Sign Language. In Proceedings - 2021
IEEE 4th National Computing Colleges Con-
ference, NCCC 2021. https://doi.org/10.1109/

172 JURNAL EMACS (Engineering, MAthematics and Computer Science) Vol.6 No.3 September 2024: 163-172

NCCC49330.2021.9428808

Marjusalinah, A. D., Samsuryadi, S., & Buchari, M. A.
(2021). Classification of Finger Spelling Amer-
ican Sign Language Using Convolutional Neu-
ral Network. Computer Engineering and Ap-
plications Journal, 10(2), 93–103. https://doi.
org/10.18495/comengapp.v10i2.377

Prajwal, K. R., Bull, H., Momeni, L., Albanie, S., Varol,
G., & Zisserman, A. (2022). Weakly-supervised
Fingerspelling Recognition in British Sign Lan-
guage Videos. BMVC 2022 - 33rd British Ma-
chine Vision Conference Proceedings, 1–19.

Saleh, A. B. U., Miah, M., & Hasan, A. L. M. (2024). Sign
Language Recognition Using Graph and General
Deep Neural Network Based on Large Scale Data-
set. IEEE Access, 12(January), 34553–34569.
https://doi.org/10.1109/ACCESS.2024.3372425

Sensuse, D. I., Putro, P. A. W., Rachmawati, R., & Sunindyo,
W. D. (2022). Initial Cybersecurity Framework
in the New Capital City of Indonesia: Factors,
Objectives, and Technology. Information (Swit-
zerland), 13(12), 1–10. https://doi.org/10.3390/
info13120580

Wei, W., Wang, J., Li, J., & Xu, M. (2023). A novel image
recommendation model based on user preferenc-
es and social relationships. Journal of King Saud
University - Computer and Information Scienc-
es, 35(7), 101640. https://doi.org/10.1016/j.jksu-
ci.2023.101640

