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Abstract – Classification of diseases in potato plants is 
crucial for agriculture to ensure quality and yield. Potatoes 
being staple foods worldwide are vulnerable to diseases 
that cause significant production losses. Early and accurate 
disease identification is essential. This study evaluates the 
impact of data augmentation on reducing overfitting in deep 
learning models for potato disease classification. Various 
CNN architectures including VGG16, VGG19, Xception, 
and InceptionV3 were compared in transfer learning 
and fine-tuning phases. The “Potato Disease Dataset” 
consisting of 451 images across seven classes was used. 
The dataset was split into training, validation, and test sets, 
and augmentation increased the training set from 360 to 
2160 images. The results indicate that models trained with 
augmented data exhibited improved performance in terms 
of accuracy, precision, recall, and F1-scores compared to 
those trained without augmentation. The learning curves 
show that data augmentation helps in reducing overfitting 
and enhancing model stability. Data augmentation is 
crucial for developing robust deep learning models for 
potato disease classification. This study also highlights the 
potential of data augmentation in addressing the challenges 
posed by small datasets in agricultural applications. The 
findings contribute to the growing body of research in 
applying deep learning techniques for more sustainable 
and efficient disease management in crops. Future work 
will explore advanced augmentation techniques and other 
architectures to enhance model performance.
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I. INTRODUCTION

Disease classification in potato plants is an important 
part of agriculture that ensures crop yields are both high and 
consistent. Potatoes are a basic item consumed worldwide 
and are sensitive to a variety of illnesses, which can result in 
severe production losses and economic issues for farmers. 
Thus, early and effective disease detection is critical for 
sensitive crops such as potatoes (Hamza et al., 2022).

Diseases in potato plants can lead to severe 
reductions in yield and quality, affecting both the economic 
stability of farmers and the food supply chain. Key diseases 
include late blight, early blight, black scurf, and powdery 
scab, which can spread rapidly and devastate crops if not 
identified and managed promptly (Sharma et al., 2023). The 
conventional methods of disease identification often rely 
on manual inspection, which is time-consuming, prone to 
errors, and requires significant expertise  (Moawad et al., 
2023).

Deep learning algorithms have shown significant 
promise in image-based illness classification applications in 
recent years. Convolutional neural networks (CNN)-based 
studies have shown great accuracy in recognizing several 
potato illnesses. For example, a CNN model accurately 
classified potato illnesses into three categories: early 
blight, late blight, and healthy (Shobanadevi et al., n.d.). 
Another study employing a DenseNet201 model obtained 
an accuracy of 99% in diagnosing potato illnesses in tubers, 
including black scarf and green tuber (Moawad et al., 2023).

Hybrid techniques have been used to improve the 
accuracy of potato disease categorization. The combination 
of CNN with long short-term memory (LSTM) networks 
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and optimization approaches such as Adaptive Shark Smell 
Optimization (ASSO) has proven useful in identifying 
illnesses with an accuracy of up to 99.02% (M. A. Patil & 
M, 2023). Additionally, a study employing hyper-parameter 
tuning and deep learning achieved an accuracy of 99.42% 
(Sharma et al., 2023).

Sholihati et al. (2020) classified potato diseases 
with a 91% accuracy rate using the VGG16 and VGG19 
architectures in another study. This suggests that the deep 
neural network approach to disease classification is feasible 
for four classes of diseases: early blight, late blight, black 
scurf, and healthy (Sholihati et al., 2020).

Additionally, transfer learning techniques have 
been used to enhance deep learning models’ classification 
performance for potato diseases. A study by Thangaraj et 
al. (2020) used a modified Xception model, achieving an 
accuracy of 98.16% for five classes: early blight, late blight, 
black scurf, powdery scab, and healthy) (Thangaraj et al., 
2020). Similarly, Charisma & Adhinata (2023) utilized the 
DenseNet201 architecture, achieving an accuracy of 92.5% 
for multiple classes of potato diseases (Charisma & Dharma 
Adhinata, 2023).

Additionally, a study using EfficientNet-V2 
architecture achieved an accuracy of 98.12% in classifying 
various potato diseases, showcasing the potential of 
optimized deep learning models in agricultural applications 
(Nazir et al., 2023).

Further, the application of MobileNet architecture in 
potato disease detection achieved an accuracy of 99.83%, 
highlighting the efficiency of lightweight models for real-
time applications (Mishra et al., 2021).

Finally, Hamza et al. (2022) reviewed numerous 
deep learning algorithms, including VGG19, VGG16, 
Google Net, and Alex Net, for potato disease identification, 
stressing the continual developments and use of deep 
learning in agriculture across multiple classes of illnesses 
(Hamza et al., 2022).

These studies demonstrate the effectiveness of deep 
learning methods in enhancing the accuracy and efficiency 
of potato disease classification, thereby aiding in better 
disease management and reducing economic losses in 
agriculture.

The purpose of this study is to assess the influence 
of data augmentation on minimizing overfitting in deep 
learning models used to classify potato illnesses. Comparing 
the performance of several convolutional neural network 
(CNN) designs, such as VGG16, VGG19, Xception, and 
InceptionV3, in both transfer learning (TL) and fine-
tuning (FT) phases, this research seeks to identify optimal 
augmentation strategies that enhance model generalization 
and accuracy. Specifically, the study aims to determine the 
effectiveness of data augmentation techniques in reducing 
overfitting and improving the robustness of these models in 
accurately identifying key potato diseases, including black 
scurf, blackleg, common scab, dry rot, healthy potatoes, 
miscellaneous, and pink rot, thereby contributing to more 
reliable disease management in agriculture.

II. METHODS

The methodology for this study consists of several 
key stages, as illustrated in Figure 1. The process begins 
with data gathering, where images of potato diseases are 
collected from various sources. These images represent 
different classes, including Black Scurf, Blackleg, Common 
Scab, Dry Rot, and Healthy potatoes. Once the data is 
collected, the images undergo preprocessing to enhance 
their quality and ensure consistency for model training. 
Preprocessing steps may include resizing the images, 
normalizing pixel values, and removing noise.

Figure 1. Experimental Design

The preprocessed data is divided into three subsets: 
80% for training, 10% for validation, and 10% for testing. 
The training set is used to train the model, the validation 
set to tweak the parameters, and the test set to evaluate the 
model’s performance. Data augmentation methods are used 
on the training set to increase the model’s resilience and stop 
overfitting. These augmentation methods, such as rotations, 
shifts, flips, and zooms, generate additional training data 
by applying random transformations, thus increasing the 
diversity of the training set.

The model training phase consists of two parallel 
paths: one with enhanced data and one without. Training 
takes place using a variety of convolutional neural network 
(CNN) designs, including VGG16, VGG19, Xception, and 
InceptionV3. Each model goes through two phases: transfer 
learning and fine-tuning. During the transfer learning phase, 
the model is initialized with pre-learned weights from big 
datasets before being trained on the potato disease dataset. 
During the fine-tuning step, the whole model, including the 
pre-trained layers, is tweaked to enhance performance on 
the specific goal of potato disease classification.
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Finally, the models are assessed on the test set 
using measures such as accuracy, precision, recall, and F1-
score. The outcomes of the augmented and non-augmented 
training routes are compared to assess the efficacy of data 
augmentation and the best performing model architecture 
and training method. This comprehensive methodology, 
depicted in Figure 1, ensures a robust and reliable model for 
classifying potato diseases.

2.1 Potato Disease Dataset
The dataset used in this study, named “Potato 

Disease Dataset,” was sourced from Kaggle (Kaggle, n.d.). 
This dataset comprises images of potato tubers affected by 
various diseases, as well as images of healthy potatoes. The 
dataset is categorized into seven classes, with a total of 451 
images. The classes include Common Scab with 62 images 
caused by bacteria, Blackleg with 60 images also caused by 
bacteria, Dry Rot with 60 images caused by fungus, Pink 
Rot with 57 images caused by fungus, and Black Scurf 
with 58 images caused by fungus. Additionally, there are 
80 images of healthy potatoes and 74 images categorized as 
miscellaneous.

To prepare the data for model training and assessment, 
it was divided into three subsets: 80% for training, 10% for 
validation, and 10% for testing. This divide guarantees that 
the model has enough data for training while maintaining 
distinct validation and test sets for unbiased model 
adjustment and performance evaluation. For the augmented 
data path, data augmentation techniques were applied to the 
original training set. The original training set of 360 photos 
was enlarged to 2160 images via augmentation. This was 
accomplished by performing numerous modifications to the 
original photos, including rotations, shifts, flips, and zooms, 
which increased the variety of the training data and helped 
to minimize overfitting.

In conclusion, Kaggle’s “Potato Disease Dataset” 
offers a broad collection of pictures for training, validating, 
and testing models for potato illness classification. The 
use of data augmentation strengthens the training process, 
resulting in the construction of trustworthy and accurate 
models for detecting potato illnesses. Figure 2 shows 
examples of dataset pictures.

Figure 2. Potato Disease Dataset

2.2 Convolutional Neural Networks (CNNs)
Convolutional Neural Networks (CNNs) are a type 

of deep learning algorithm used largely to analyze visual 
input. They are especially useful for image classification 
problems because they can automatically and adaptively 
learn spatial hierarchies of features from input photos. 
A CNN’s fundamental architecture consists of numerous 
layers, including convolutional layers, pooling layers, and 
fully connected layers, that work together to extract and 
learn characteristics from pictures.

VGG16 and VGG19 are two popular CNN 
architectures created by the Visual Geometry Group (VGG) 
at the University of Oxford. VGG16 and VGG19 have 16 
and 19 layers, respectively. Both models rely on modest 3x3 
convolution filters and are well-known for their simplicity 
and success in a variety of picture classification applications. 
A study by Sinha and Lalit (2021) compared VGG16 and 
VGG19 with other architectures such as ResNet50 and 
InceptionV3 for vision-based security systems, highlighting 
the computational expense of VGG models due to their 
large number of parameters (Sinha & Lalit, 2022).

Xception is another powerful CNN architecture that 
improves upon the Inception model by replacing the standard 
Inception modules with depthwise separable convolutions. 
This results in a more efficient model with fewer parameters 
and potentially better performance. A study by Patil et al. 
(2020) used Xception, along with other models like VGG16 
and VGG19, to classify lung diseases from X-ray images, 
demonstrating its effectiveness in medical image analysis 
(N. Patil et al., 2020).

Inception, also known as GoogLeNet, is a deep 
CNN architecture designed to perform well even with fewer 
computational resources. It employs a combination of 1x1, 
3x3, and 5x5 convolutional filters to capture various spatial 
features and reduce the number of parameters. In a study by 
Datt and Kukreja (2022), the Inception-v3 model was used 
for recognizing different phenological stages of apple crops, 
achieving high accuracy in comparison to other models like 
VGG16, ResNet50, and Xception (Datt & Kukreja, 2022).

In CNN applications, transfer learning is a popular 
technique used to fine-tune models that have already been 
pre-trained on huge datasets for certain tasks. Performance 
is greatly enhanced by this method, particularly when 
there is a shortage of data for the target task. Abdulsattar 
and Hussain (2022) highlighted the effectiveness of 
transfer learning and fine-tuning strategies using popular 
architectures such as VGG16, VGG19, InceptionV3, and 
Xception for facial expression recognition, demonstrating 
the adaptability and robustness of these models in different 
domains (Abdulsattar & Hussain, 2022).

2.3 Evaluation Metrics
Evaluation metrics such as accuracy, precision, 

recall, and F1-score are critical for measuring classification 
model performance. Accuracy quantifies the proportion 
of correct predictions among all forecasts made and is 
appropriate for balanced datasets. However, it may not 
be sufficient for unbalanced datasets since it might be 
deceptive. Precision (Positive Predictive Value) is defined as 
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the ratio of properly predicted positive observations to total 
expected positives, highlighting the significance of relevant 
outcomes. Recall (Sensitivity) is the ratio of accurately 
predicted positive observations to all observations in 
the actual class, demonstrating the capability to catch all 
relevant occurrences (Riyanto et al., n.d.).

F1-score is the harmonic mean of accuracy and 
recall, which balances the two measures and is especially 
effective for unbalanced datasets. This score is especially 
beneficial when we seek a balance between precision and 
recall (Sitarz, 2022). The equations for these metrics are as 
follows:

Accuracy = TP+TN/TP+TN+FP+FN               (1)
Precision = TP/TP+FP                           (2)

 Recall = TP/TP+FN                            (3)
F1-Score = 2TP/2TP+FN+FP                     (4)

Where, TP is True Positives, TN is True Negatives, 
FP is False Positives, and FN is False Negatives. These 
measures assist give a complete evaluation of model 
performance, especially in cases when class imbalance 
exists (Yacouby & Axman, 2020).

III. RESULTS AND DISCUSSION

The experimental environment utilized for this 
study was Google Colab Pro, leveraging the powerful 
computational capabilities of the V100 GPU and 25GB of 
RAM. This setup ensured efficient handling of the large 
dataset and complex computations required for training the 
deep learning models. The use of Google Colab Pro provided 
a robust platform to perform extensive data augmentation 
and train multiple convolutional neural network (CNN) 
architectures, including VGG16, VGG19, Xception, and 
InceptionV3.

The experiment findings, reported in Table 1, show 
the performance of models trained with and without data 
augmentation. The assessment parameters comprised 
accuracy, precision, recall, and F1-score. These metrics 
were calculated for both the transfer learning and fine-tuning 
stages of each model. The primary objective was to assess 
the impact of data augmentation on model performance 
and determine the optimal strategy for classifying potato 
diseases. Detailed experimental results can be found in 
Table I.

Table II. Experimental Results 

Model Phase Metrics No Aug With 
Aug

VGG16 TL

Accuracy 73.33 62.22

Precision 72.33 63.70

Recall 73.33 62.22

F1-Score 72.03 60.81

VGG16 FT

Accuracy 73.33 75.56

Precision 74.93 69.07

Recall 73.33 75.56

F1-Score 73.15 71.75

VGG19 TL

Accuracy 57.78 66.67

Precision 62.30 67.55

Recall 57.77 66.67

F1-Score 58.46 66.72

VGG19 FT

Accuracy 55.56 75.56

Precision 56.24 74.88

Recall 55.56 75.56

F1-Score 55.18 74,04

Xception TL

Accuracy 73.33 60.00

Precision 78.86 74.58

Recall 73.33 60.00

F1-Score 71.99 56.98

Xception FT

Accuracy 77.78 68.89

Precision 78.22 71.74

Recall 77.78 68.89

F1-Score 77.05 67.22

InceptionV3 TL

Accuracy 77.78 57.78

Precision 80.54 59.64

Recall 77.78 57.78

F1-Score 77.98 55.62

InceptionV3 FT

Accuracy 62.22 60.00

Precision 64.7 62.43

Recall 62.22 60.00

F1-Score 61.60 58.20

The results in Table I indicate varying impacts of 
data augmentation on the performance of different CNN 
architectures.

For the VGG16 model, during the transfer learning 
phase, the model without augmentation showed better 
performance across all metrics, with an accuracy of 73.33%, 
precision of 72.33%, recall of 73.33%, and F1-score of 
72.03%. However, during the fine-tuning phase, the model 
with augmentation performed better in terms of accuracy 
(75.56%) and recall (75.56%), although precision and F1-
score were slightly lower compared to the model without 
augmentation. The learning curves for VGG16, as shown in 
Figure 3, illustrate that the model with augmentation has a 
smoother training process and less overfitting compared to 
the model without augmentation.

For the VGG19 model, a similar pattern was 
observed. During the transfer learning phase, the model with 
augmentation significantly outperformed the model without 
augmentation, with an accuracy of 66.67%, precision of 
67.55%, recall of 66.67%, and F1-score of 66.72%. In the 
fine-tuning phase, the model with augmentation continued 
to show superior performance, highlighting the benefits of 
data augmentation in improving the generalization of the 
model.

The Xception model showed notable differences 
as well. Without augmentation, the model achieved an 
accuracy of 73.33%, precision of 78.86%, recall of 73.33%, 
and F1-score of 71.99% during the transfer learning phase. 
With augmentation, these metrics dropped, indicating that 
the model struggled with the increased data variability. 
However, during the fine-tuning phase, the model with 
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augmentation showed improved performance, particularly 
in precision and recall. The learning curves for Xception, as 
presented in Figure 4, demonstrate that data augmentation 
helped mitigate overfitting, leading to a more stable and 
generalizable model.

For the InceptionV3 model, the performance was 
better without augmentation during the transfer learning 
phase, with an accuracy of 77.78%, precision of 80.54%, 
recall of 77.78%, and F1-score of 77.98%. However, in the 
fine-tuning phase, the differences between the models with 
and without augmentation were less pronounced, indicating 
that the inherent architecture of InceptionV3 may already 
possess strong generalization capabilities.

Overall, the results indicate that data augmentation 
generally helps reduce overfitting and improves the 
robustness of the models, although the extent of improvement 
varies across different architectures. The learning curves 
and evaluation metrics underscore the importance of data 
augmentation in training deep learning models for image 
classification tasks.

Figure 3. Comparison of Learning Curves for VGG16 FT Phase Without 
and With Augmentation

The learning curves for VGG16 (Figure 3) show 
that the model with augmentation has a more stable training 
process and less overfitting compared to the model trained 
without augmentation.

Figure 4. Comparison of Learning Curves for Xception FT Phase 
Without and With Augmentation

The learning curves for Xception (Figure 4) illustrate 
that data augmentation helped in reducing overfitting, 
leading to a more generalizable model.

In summary, the application of data augmentation 
techniques has shown to be beneficial in improving the 
generalization and robustness of deep learning models for 
potato disease classification, as evidenced by the results and 
learning curves presented.

IV. CONCLUSION

In conclusion, the results of this study demonstrate 
that data augmentation plays a crucial role in enhancing 
the performance of deep learning models for potato 
disease classification. By applying various augmentation 
techniques, the models trained on augmented data exhibited 
reduced overfitting and improved generalization, as 
evidenced by higher accuracy, precision, recall, and F1-
scores in several cases. Specifically, models like VGG19 and 
Xception showed significant improvements in performance 
metrics when trained with augmented data, highlighting 
the effectiveness of data augmentation in creating more 
robust and reliable models. Overall, this study underscores 
the importance of employing data augmentation to develop 
accurate and generalizable deep learning models for 
agricultural applications.

For future works, several directions can be explored 
to further enhance the performance and applicability of 
deep learning models for potato disease classification. One 
potential avenue is to investigate the use of advanced data 
augmentation techniques and synthetic data generation to 
create even more diverse training datasets. Additionally, 
exploring other state-of-the-art architectures and ensemble 
methods could yield improvements in classification accuracy 
and robustness. Incorporating explainable AI techniques to 
interpret model predictions and provide insights into the 
decision-making process can also be valuable for gaining 
trust from agricultural practitioners. Moreover, expanding 
the dataset to include more diverse conditions and different 
stages of disease progression could help improve model 
generalization. Finally, deploying these models in real-time 
systems and validating their performance in practical field 
conditions would be crucial steps towards integrating these 
solutions into agricultural disease management practices.
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