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Abstract –  In this paper, we discuss the implementation of 
momentum conservative scheme to shallow water equations 
(SWE). In shallow water model, the hydrodynamic pressure 
of the water is neglected. Here, the numerical calculation 
of mass and momentum conservation was applied on a 
staggered grid domain. The vertical interval was divided 
into two parts which made the computation quite efficient 
and accurate. Our focus is on the performance of the 
numerical scheme in simulating wave propagation and run-
up phenomena, where the main challenge is to calculate the 
wave speed accurately and to count the non-linear term of the 
model. Here we also considered the wet and dry conditions 
of the topography. Three benchmark tests were picked out 
to validate the numerical scheme. A simulation of standing 
wave was carried out; the results were compared to the 
linear analytical solution and show a good fit. In addition, 
a simulation of harmonic wave propagation on a sloping 
beach was conducted, and the results closely align with the 
expected values from exact solution. Finally, we carried out 
a simulation of solitary wave with a sloping topography; 
and the results were compared to laboratory data. A good 
agreement was observed between the simulation results and 
experimental measurements.
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I. INTRODUCTION

A more comprehensive knowledge of physical 
phenomena in shallow environments can be attained by 
studying the shallow water equations (SWE). Physical 
phenomena including standing waves (Anakhov, 2023; 
Ren et al., 2022), the generation of internal waves in straits 
(Cao et al., 2014; Kocaman et al., 2020; Qian et al., 2018), 
dam breaks (Cantero-Chinchilla et al., 2020; Chang et al., 
2011), wave refraction (Hayatdavoodi & Ertekin, 2023), 
and tsunami propagation near the coast (Alfwzan et al., 
2023; Tinh et al., 2021) have been extensively studied 
using SWE to understand their characteristics, behaviour, 
and impact. In the study of the shallow water model, the 
main assumption is that the horizontal length scale is much 
greater than the depth scale. This model is valid to simulate 
propagation of long wave, like tsunami. Furthermore, for 
problems with shorter wavelengths can be simulated using 
the Boussinesq approximation (Dai & Huang, 2021; Wang 
et al., 2023)and non-hydrostatic wave model (He et al., 
2020; Ma et al., 2022).

In shallow water equations, the hydrodinamic 
pressure of the fluid is not taken into account. This condition 
results in faster numerical computation of this model. 
However, in numerical shallow water model, the challenge 
to be faced was in the discretization of the non-linear term, 
i.e. advection term in momentum equations. Here, we 
implemented the momentum conservative scheme to solve 
the shallow water equations numerically. A staggered grid 
domain was applied in this method (Stelling & Zijlema, 
2003). The aim of this study is to validate the capability 
of numerical scheme in simulating various cases. Three 
test cases were conducted: standing wave phenomena, 
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harmonic and solitary wave run-up (Carrier & Greenspan, 
1958; Synolakis, 1986). The standing wave simulation 
was carried out to validate the accuracy of the numerical 
scheme in calculating the wave velocity. Furthermore, the 
simulations of harmonic and solitary wave propagation 
on sloping topography were conducted to confirm the 
implementation of the wet-dry procedure.

Outline of this paper is described as follows. The 
explanation about mathematical model of the shallow 
water equations and the numerical methods are presented in 
Section 2. In Section 3, the results of numerical simulations 
are discussed. Finally, the conclusions are presented in 
Section 4.

II. METHODS

The shallow water equations are derived from Euler 
equations, which is a particular form of the Navier-Stokes 
equations for inviscid fluid with zero thermal conductivity. 
Consider a layer of fluid bounded above with a free surface 
z=η(x,t)  and below with a topography z=-d(x). The two-
dimensional Euler equations for homogeneous fluid are 
express as:

ux + wz=0,                                        (1)

ut + uux + wuz = -gηx - px ,                (2)

wt + uwx + wwz = -pz ,                      (3)

where u(x,z,t) and w(x,z,t) respectively denotes the 
fluid particle velocity in horizontal and vertical direction,  g 
the gravitational acceleration, and p(x,z,t) the hydrodynamic 
pressure term. The total water thickness is denoted by 
h(x,t)=η(x,t)+d(x). 

In shallow water equations, the horizontal velocity  
u(x,z,t) is calculated in terms of its depth averaged defined by:

               (4)
The horizontal domain is assumed to be much longer 

than the vertical domain, so the fluid vertical velocity can be 
ignored. The velocity at the surface is assumed to be equal to 
the velocity at the impermeable bottom, u(x,z=η,t)=u(x,z= 
-d,t)=u̅. The integration of (1) over the fluid depth from z=-
d(x) to z=η(x,t) leads to

ht+(hu̅)x=0.                                              (5)

In shallow water assumption, the hydrodynamic 
pressure p is neglected. Thus, the governing equations for 
shallow water model are expressed as follows

    ht+(hu̅)x=0,                                              (6)

u̅t+u̅u̅x+gηx=0.                                      (7)

    Now consider the equations (1-3), where the total 
fluid depth is divided into two-layer, h1(x,t) and h2(x,t) with 
h(x,t)=h1(x,t)+h2(x,t). The water thickness at upper layer is 
denoted by h1(x,t) and at lower layer is denoted by h2(x,t). 
Here h1 and h2 are not necessarily equal. The governing 

equations for two-layer shallow water model are:

ht+∂x  (h1 u̅1 )+∂x (h2 u̅2 ) = 0,           (8)

∂t (u̅1 )+u̅1 ∂x (u̅1 )+g∂x η =0,             (9)

∂t (u̅2 )+u̅2 ∂x (u̅2 )+g∂x η = 0.          (10)

These equations will be solved numerically using 
momentum conservative scheme in staggered grid, which is 
adopted from Stelling and Zijlema (2003). 

In this method the horizontal grid is defined by:

{0=x(1/2),x1,x(3/2),x2,...,xN,x(N+1/2) = L}.       (11)

In this domain, the unknowns are arranged as in 
Figure 1. The horizontal velocity is located at the center of 
the cell, and the water height is located at the edge of the cell.

Since the water height is computed at the edge of 
the cell, the value of  at the centre of the cell is calculated 
using upwind approximation, which is denoted with, *h and 
defined by:

 (12)

Figure 1 The Unknowns Position in Staggered Grid Domain

This approximation follows the water flow direction. 
Thus, the discrete equations from (8-10) can be written as 
follows.

                (13)

                (14)
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for m = 1,2. The momentum equations above are 
calculated when the cell [x(i-1),xi] is wet, that is when hi-1 > 0 
and hi > 0 are satisfied. Here, the advection terms u̅∂x u̅ are 
approximated using momentum conservative scheme which 
is derived in Stelling and Busnelli (2001), as follows

             (15)
where:

              (16)

              (17)

              (18)

              (19)

III. RESULTS AND DISCUSSION

This section describes three test problems to validate 
the numerical scheme. The first test case is a standing wave 
simulation on flat bottom. In this case, the wave propagation 
that is produced by the numerical simulation is compared 
to the exact solution. Other cases are conducted to test the 
wet-dry procedure, i.e. harmonic and solitary wave run-up 
on sloping beach.

3.1 Simulation of Standing Wave
The first test case is standing wave simulation in a 

closed basin. In this simulation, we chose the length 100 m 
and depth 5 m. The initial wave height was taken as:

η(x,0) = A cos(kx),                         (20)

where the amplitude A = 0.1, the wave number 
k=π/100, and 0 ≤ x ≤ 100. In numerical computation, the 
horizontal domain was divided into 1000 grid cells of each 
0.1 m, and the computation time step was 0.01 s. 

Here we compare the numerical result to the exact 
solution. Figure 2 presents the comparation of time series 
of two-layer SWE and exact surface elevation at x=75 m. 
The simulation (blue solid line) and exact solution (red 
dotted line) show a very good agreement. The waves from 
our computed simulation are able to propagate at almost 
the same speed as the exact solution. The exact solution is 
obtained from linear wave theory: 

       (21)

And the wave propagation speed, c=2.21, is 
calculated based exact linear dispersion relation:

                     (22)

Figure 2. Comparation of Wave Surface at x = 75 Between Numerical 
Simulation and Exact Solution

3.2 Harmonic Wave Run-up
In this case, we simulate propagation of harmonic 

wave on a sloping beach. This case is also known as Carrier-
Greenspan (1958) problem. The computation is carried out 
at domain -12.5 ≤ x ≤ 5, where the bottom topography is 
a beach with slope 1:25 and the maximum depth is 0.5 m. 
Spatial discretization Δ x = 0.02 m and time step Δ t = 0.006 
s are used in the numerical computation.

The simulation result is presented in Figure 3 below. 
Here we compare the shoreline motion simulated using 
two-layer SWE (blue line) and the analytical solution from 
Carrier and Greenspan (red dotted line). However, the 
analytical solution is derived using SWE model. This result 
show that our numerical scheme is able to predict the wave 
run-up and to count the wet-dry condition in this case well.

Figure 3. Shoreline Motion of Carrier and Greenspan Problem

3.3 Solitary Wave on Sloping Beach
The last test case is a simulation of solitary wave 

on sloping beach. This simulation is conducted based on an 
experiment by Synolakis (1987) in W. M. Keck Laboratory, 
California Institute of Technology. The experiment was 
carried out as a validation of linear wave theory, derived by 
Synolakis, to predict the maximum run-up of solitary wave 
on sloping beach. In the laboratory, a wave tank with length 
37.73 m, width 0.61 m, and height 0.39 m was used, with 
a sloping beach (with slope 1:19.85) at the right side of the 
tank.
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The initial wave is a solitary wave with peak at x = 
X1 as follow:

η (x,0) = A/d  sech2 γ (x - X1 ),               (23)

where γ = (3A/4d)(1/2) and A/d is normalized 
amplitude of solitary wave. In this case, we use A/d= 
0.0185, with computational discretization Δ x = 0.2 and Δ 
t = 0.01. The computational domain is x [-300,10]. The 
results are shown in Figure 4. We present the wave profile 
at four different dimensionless time, they are at t = 40, t = 
50, t = 60 and t = 70. These numerical results (blue solid 
line) are compared to the laboratory results (red dotted 
line). In general, the comparation shows a good agreement, 
especially during the wave run-up.

Figure 4. Wave Profile at (a) t = 40, (b) t = 50, (c) t = 60, (d) t = 70

IV. CONCLUSION

In this present study, the numerical scheme of 
momentum conservative on staggered grid has been 
successfully implemented on shallow water equations. In 
this model, the non-hydrostatic pressure term is ignored. 
The two-layer numerical model produced good results in 
simulating standing wave phenomena and harmonic and 
solitary wave propagation over a sloping beach, including 
predicting wave run-up height. The results of simulations 
are compared to exact theory or laboratory data. In our 
numerical scheme, we also implemented the wet-dry 
procedure for the wave run-up cases. Validation and 
verification of this numerical scheme with more various 
cases invites further exploration.
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