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Abstract – In this study, we address the challenge of 
predicting the Social Cohesion Index in Jakarta through 
a comprehensive analysis of machine learning models. 
Finding the most accurate and effective predictive model 
for this crucial urban evaluation task is the primary goal 
of our research. We use a variety of machine learning 
algorithms, comparing their performance using metrics 
like Mean Absolute Error (MAE), Root Mean Square Error 
(RMSE), Mean Absolute Percentage Error (MAPE), and 
computational cost. These algorithms include Gradient 
Boosted Decision Trees (GBDT), Polynomial Regression, 
Random Forest, Support Vector Machine (SVM), and 
Multi-Layer Perceptron (MLP). It should be noted that 
GBDT stands out as a top performer, regularly displaying 
outstanding accuracy with a competitive MAE of 0.692, 
RMSE of 0.887, and MAPE of 25.59%. The computational 
efficiency of GBDT is also impressive, with predictions 
taking only 0.05 seconds. These results underscore the 
potential of GBDT as a practical and precise tool for 
real-time assessments of social cohesion in large urban 
environments like Jakarta. The findings offer a data-driven 
way to guide policy decisions and community development 
activities, with important implications for urban planning 
and governance. Overall, this research emphasizes the 
promise of GBDT in boosting social cohesion evaluation 
approaches and increases our understanding of the 
application of machine learning in addressing complex 
urban difficulties.
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I. INTRODUCTION

Social cohesion is crucial in determining any 
urban community’s harmony, resilience, and development 
(Jewett et al., 2021) (Steiner et al., 2018). Its evaluation 
provides crucial insights into individuals’ collective 
health and interdependence within a city’s diverse fabric. 
In megacities like Jakarta, where population density is 
surging, it is challenging to collect comprehensive data 
on social cohesion using conventional survey techniques 
(Rybak, 2023). The overwhelming number of individuals, 
geographical complexities, and logistical constraints have 
necessitated assessing social cohesion.

This study employs a data-driven methodology to 
forecast and examine the Social Cohesion Index of Jakarta’s 
neighborhoods. Using machine learning capabilities, 
we intend to revolutionize the method by which we gain 
insight into the complex social dynamics of this enormous 
metropolis. Despite their value, traditional survey techniques 
frequently need help to accommodate the vast size of 
Jakarta’s population (Andariesta & Wasesa, 2022) (Viljanen 
et al., 2022) (Sarker, 2021). Consequently, our research 
arises as a timely response, offering an alternative method 
for data acquisition that is both scalable and efficient..

We predicted the Social Cohesion Index using 
a variety of well-known machine learning algorithms 
and a large dataset containing numerous socioeconomic 
and demographic characteristics. This study compared 
the effectiveness of Polynomial Regression (Narayan 
& Daniel, 2022), Decision Tree (Pekel, 2020), Random 
Forest (Tzenios, 2020), Support Vector Machine (SVM) 
(Parbat & Chakraborty, 2020), and Multi-Layer Perceptron 
(MLP) models (Ouma et al., 2020). Notably, within the 
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scope of our investigation, the Gradient Boosted Decision 
Tree (GBDT) model surfaces prominently, demonstrating 
remarkable predictive abilities (Zhang & Jung, 2021). 
This accomplishment has the potential to advance the field 
of predictive modeling considerably and highlights the 
expanding role of machine learning techniques in addressing 
significant urban challenges comprehensively.

This research serves as a beacon of innovation for 
urban planners, policymakers, and public data management 
entities grappling with the complexity of accurately 
documenting social cohesion in Jakarta. Our findings could 
facilitate more enlightened decision-making processes 
and targeted interventions that promote social harmony. 
By investigating the relationship between data science 
and social dynamics, this study represents a proactive step 
toward developing comprehensive and effective urban 
assessment methods.

II. METHODS

This study aimed to develop a machine learning 
model for predicting Jakarta’s Social Cohesion Index 
(SCI), which assesses the degree of social integration 
and solidarity among city residents. Figure 1 depicts the 
six primary stages involved in developing and evaluating 
our model. First, this study conducted a literature review 
to comprehend the concept and dimensions of SCI and 
identify the variables and indicators that can be used to 
measure it. Secondly, we gathered data from a publicly 
available dataset paper to ensure validity. Based on the 
data analysis and the literature review, we then planned the 
design and architecture of our model. Our primary machine 
learning technique is a polynomial regression model 
with optimal degree selection because it can capture the 
nonlinear and complex relationship between the SCI and its 
predictors. Fourth, we constructed and trained our model 
with the collected data using Python and Sci-Kit-Learn 
libraries. Fifth, we utilized K-Fold Cross-Validation to 
assess the performance and precision of our model. Several 
metrics, including Mean Squared Error (MSE), Root Mean 
Squared Error (RMSE), and Mean Average Percentage 
Error (MAPE), were utilized to evaluate the model’s fit. In 
conclusion, this research compared our model to existing 
models that employ various machine learning techniques, 
such as Decision Trees, Random Forests, Support Vector 
Machines (SVM), and Multi-Layer Perceptron (MLP).

Figure 1. Machine Learning Model Research and Development Plan

2.1 Jakarta Social Cohesion Dataset
The dataset by (Amir et al., 2023) is an extensive 

compilation of factors associated with social cohesion in 
Jakarta’s urban life. The dataset comprises information 
regarding 2,052 respondents from 44 Jakarta districts. 
Various questions were posed to the respondents regarding 
their social interactions, participation in community 
activities, and perceptions of trust and reciprocity. The 
dataset also contains information on the demographic 
characteristics of the respondents, such as their age, gender, 
level of education, and income.

The dataset was collected using a technique of 
stratified random sampling. The respondents were selected 
from different districts in Jakarta in proportion to the 
population of each district. The data compilation occurred 
between January and February of 2022. The dataset includes 
eight cohesion factor variables, including gender, age, level 
of education, income, two district variables, religion, and 
residential location. There are three variables for each: 
Trust, Recognition, Participation, Reciprocity, and Insertion 
among the cohesion variables. All data types are categorical 
or ordinal, and no complex data cleansing is required. The 
model will be trained to predict all 15 variables of cohesion.

2.2 K-Fold Cross-Validation
We have used the K-Fold Cross-Validation method 

in all of our experimental settings to reduce the potential 
for variance bias caused by randomly splitting the test set. 
This bias may result in inaccurate results. Specifically, we 
have divided our dataset into five folds, resulting in a test 
data ratio equaling twenty percent of the overall dataset for 
each split. The purpose of this method is to systematically 
evaluate the performance of our predictive models across 
several different data folds. The test data error values were 
recorded throughout each iteration of the K-Fold Cross-
Validation procedure. After all folds have been completed, 
these values are then averaged in order to produce an overall 
evaluation of the model’s performance for the scenario that 
was provided.

Figure 2. K-Fold Cross-Validation Principle
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In this study, the application of K-Fold Cross-
Validation, depicted in Figure 2, is one of the most critical 
factors contributing to improving our experimental findings’ 
reliability and validity. This method ensures that our models 
are carefully tested across various subsets of the data, 
delivering a more comprehensive evaluation of their ability 
to predict future outcomes as a result. We can evaluate the 
model’s generalization performance more accurately by 
averaging the test error values from numerous folds. This 
method also lessens the impact of the data’s variability 
on our findings and increases the overall reliability of our 
conclusions.

2.3 Gradient Boosted Decision Tree 
Gradient boosting develops sequentially weaker 

(simpler) prediction models, each attempting to predict 
the error left over by the previous model. Weak learners 
who perform slightly better than random chance is used in 
boosting. Gradient Boosting focuses on adding these weak 
learners one at a time and eliminating the observations a 
learner gets right at every step. The focus is on teaching 
new, weaker learners how to handle the remaining difficult 
observations at each step.

Figure 3. Gradient Boosted Decision Tree (GBDT)

As shown by Figure 3, GBDT combines several 
weak learners into a single strong learner. The weak 
learners, in this case, are the individual decision trees. 
Each tree attempts to reduce the error of the one that 
comes before it, and all the trees are connected in series. 
Boosting algorithms are typically slow to learn but also 
highly accurate because of this sequential connection. 
Slower learning models outperform faster learning ones in 

statistical learning. The weak learners are adjusted so that 
each new learner fits into the leftovers from the step before. 
As the model gets better over iteration, the weak learners fit 
better. Each step’s results are combined in the final model 
to produce a strong learner. The residuals are found using 
a loss function. For example, logarithmic loss (log loss) 
can be used for classification tasks and mean squared error 
(MSE) can be used for regression tasks. It is important to 
note that adding a new tree does not impact any existing 
trees in the model. The additional decision tree fits the 
current model’s residuals.

2.4 Experimental Setup 
This comprehensive experiment uses several 

different machine-learning models, which is a diversity 
that inevitably creates issues when attempting to develop 
a uniform parameter situation relevant to all models. To 
address this level of complexity, a more subtle technique has 
been employed, wherein each model has been painstakingly 
fine-tuned over a specific number of trials. By making this 
tactical change, we are allowed to maximize the parameters 
of each model and, as a result, make full use of the inherent 
benefits and distinguishing qualities of these models. We 
ensure a solid foundation for our comparative research by 
adapting the tuning process to the specific requirements 
of each model. This decision enables us to identify the 
intricacies of the performance of each model.

The replies to eight survey questions regarding 
respondents’ places of residence make up the primary dataset 
used for all machine learning models. These characteristics, 
which function as independent variables, are essential 
components of the predictive models we use. The answers 
to multiple-choice questions go through an essential step 
called one-hot encoding so machines may process them 
more easily. This transformation guarantees that the data are 
compatible with the algorithms used in machine learning and 
maintains the critical nuances embedded in the responses. 
In the meantime, our research depends on several aspects 
of social cohesion, represented by the dependent variables. 
Each of these dimensions consists of two parameters, and 
the machine learning models’ overall goal is to forecast both 
characteristics to contribute to a comprehensive knowledge 
of the dynamics of social cohesiveness.

In the framework of our experiment, the evaluation set 
comprises around 410 rows (or 20% of the overall dataset), 
whereas the training set comprises the remaining 1642 
rows. This segmentation ensures a thorough examination 
of the predicted performance of each model on data that 
has yet to be observed. Performance metrics, including the 
Mean Average Error (MAE), Root Mean Squared Error 
(RMSE), Mean Average Percentage Error (MAPE), and 
model processing duration in seconds, are systematically 
recorded to assess each model’s efficacy comprehensively. 
In addition, it is of the utmost importance to point out 
that all tests are carried out on the Google Colab platform 
without employing GPUs. This strategic decision ensures 
the validity and comparability of our metric measurements 
while emphasizing the applicability and accessibility of our 
research findings for a broad audience of users and scholars.
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III. RESULTS AND DISCUSSIO

Examining the performance between the Gradient 
Boosted Decision Trees (GBDT) model and the Decision 
Tree (DT) model, which is more generic, was the first stage 
in designing our experiment. The necessity of laying a 
basic standard for our predictive modeling system led to the 
conscious decision to use this benchmark. When we first 
evaluate how well a traditional DT performs, we can get 
essential insights into the intrinsic complexity of the social 
cohesiveness prediction problem. Using this comparison to 
establish a baseline, we can evaluate the additional value that 
the GBDT, in its capacity as an ensemble learning approach, 
brings to the table. In addition, it offers a helpful point of 
reference for assessing the efficiency of more sophisticated 
machine learning models that were subsequently included in 
the scope of our investigation. This method of strategically 
comparing models enables us to determine that GBDT is 
superior and can improve prediction accuracy considerably. 
As a result, verify its function as the proposed model for 
forecasting the Social Cohesion Index in Jakarta. 

Figure 4. GBDT and Decision Tree (DT) Error Comparison

In Figure 4, we present a comparative analysis of the 
performance of Gradient Boosted Decision Trees (GBDT) 
and traditional Decision Trees (DT) based on their average 
Mean Absolute Error (MAE) and Root Mean Square Error 
(RMSE) across cross-validation folds. The findings show 
that the GBDT model has a significant advantage over its 
DT counterpart. Remarkably, GBDT outperforms DT in 
terms of accuracy in predicting social cohesion scores, with 
an average MAE of 0.692 compared to 0.7848 for DT. This 
result shows that GBDT captures more intricate correlations 
and patterns in the data, leading to more accurate 
predictions. Similarly, GBDT surpasses DT in terms of 
RMSE, with an average RMSE of 0.887 as opposed to 
DT’s 1.0726, indicating that GBDT’s predictions are more 
accurate and have less volatility. These results highlight 
the effectiveness of ensemble approaches, such as GBDT, 
in improving predictive performance, which is crucial in 
applications where precision is crucial, such as evaluating 
social cohesion in urban situations.

Figure 5. GBDT, Polynomial Regression, and Random Forest (RF) Error 
Comparison

Polynomial Regression and Random Forest (RF) are 
three additional machine learning models that we include 
in Figure 5 to further our comparative research. The graph 
shows the typical Mean Absolute Error (MAE) and Root 
Mean Square Error (RMSE) for these models across cross-
validation folds. With an average MAE of 0.692 and RMSE 
of 0.887, GBDT remains the best-performing model. With an 
average MAE of 0.6974 and RMSE of 0.8963, Polynomial 
Regression comes in second place, demonstrating its 
proficiency in capturing complex relationships. Random 
Forest performs admirably while somewhat trailing with 
an average MAE of 0.7329 and RMSE of 0.9559. These 
outcomes demonstrate how GBDT consistently provides 
higher accuracy and precision, reiterating its effectiveness 
in predicting social cohesion scores. Furthermore, the 
competitive performance of Polynomial Regression and 
Random Forest highlights the significance of investigating 
several modeling strategies in tackling complex urban 
challenges, where nuanced insights and reliable forecasts 
are of utmost relevance.

Figure 6. GBDT, Support Vector Machine (SVM), and Multi-Layer 
Perceptron (MLP) Error Comparison

Support Vector Machine (SVM) and Multi-Layer 
Perceptron (MLP) were two additional machine learning 
models that were included in our comparison study, as 
shown in Figure 6. The average Mean Absolute Error (MAE) 
and Root Mean Square Error (RMSE) for these models 
throughout cross-validation folds are shown in the graph. The 
average MAE and RMSE for GBDT are noteworthy at 0.692 
and 0.887, respectively. However, SVM shines out because 
of its exceptional ability to identify underlying patterns in 
the data, as evidenced by its incredibly low average MAE 
of 0.6536 and RMSE of 0.9188. With an average MAE of 
0.701 and RMSE of 0.9179, MLP, despite slightly lagging, 
nevertheless exhibits good predictive performance. These 



173Predictive Modeling of Jakarta’s Social Cohesion… (Muhammad Rizki Nur Majiid & Karli Eka Setiawan)

findings highlight the adaptability of machine learning 
methods; of notice are the excellent accuracy of SVM and 
the robustness of GBDT. In the case of forecasting social 
cohesiveness scores, the choice of the most relevant model 
may depend on certain application needs, such as the need 
for precision or computational efficiency, underlining the 
significance of carefully selecting the right method for the 
task at hand.

Figure 7. Models Error Percentage Comparison

We analyze the average Mean Absolute Percentage 
Error (MAPE) throughout cross-validation folds for all the 
models considered in this study, and the results are shown 
in Figure 7. With a MAPE of 25.59%, the Gradient Boosted 
Decision Trees (GBDT) model, which is the suggested 
model, stands out. This result shows that, on average, the 
social cohesion scores predicted by GBDT differ by about 
25.59% from the actual values. Although GBDT has good 
predictive performance, placing this finding within the larger 
pool of models tested is essential. The MAPE for Decision 
Trees (DT) is somewhat higher at 27.11%, while the MAPE 
for Polynomial Regression and Support Vector Machine 
(SVM) are both competitive at 24.79%. With a MAPE of 
25.59%, Random Forest (RF) exhibits a comparable level 
of accuracy, while Multi-Layer Perceptron (MLP) trails 
slightly with a MAPE of 25.82%. Different MAPE values 
provide helpful information about the relative accuracy of 
different models and can help determine which model is best 
for forecasting Jakarta’s Social Cohesion Index. Despite 
performance differences, GBDT’s steady performance 
upholds its reputation as a reliable and accurate option for 
this crucial forecasting activity.

Figure 8. Models Computational Cost Comparison

By calculating the time each model took to forecast 
the whole evaluation set, Figure 8 provides essential 
insights into the computational effectiveness of the 

examined models. The Gradient Boosted Decision Trees 
(GBDT) model is an outstanding example of efficiency, 
which can provide predictions in about 0.05 seconds. This 
efficiency is awe-inspiring, given its strong prediction 
abilities and the competitive MAE, RMSE, and MAPE 
values. In comparison, the Decision Trees (DT) model 
requires only 0.02 seconds, showing quick processing. 
Polynomial Regression is the most time-efficient among 
the models, taking only 0.01 seconds, while Random 
Forest (RF) and Support Vector Machine (SVM) incur 
slightly longer processing times at 0.29 and 0.51 seconds, 
respectively. Incredibly, Multi-Layer Perceptron (MLP) 
performs predictions in just 0.0081 seconds. These results 
demonstrate a trade-off between computational expense and 
prediction precision. In real-time or large-scale applications 
where accuracy and speed are critical factors, GBDT 
appears attractive because it strikes a compromise between 
predictive strength and computational efficiency.

IV. CONCLUSION

In conclusion, this study has investigated in-depth 
machine learning models for estimating social cohesiveness 
scores in Jakarta’s dynamic metropolitan environment. The 
Gradient Boosted Decision Trees (GBDT) model, put out 
as a strong candidate, has repeatedly shown exceptional 
prediction ability among the models tested. In terms of Mean 
Absolute Error (MAE), Root Mean Square Error (RMSE), 
and Mean Absolute Percentage Error (MAPE), GBDT 
attained competitive results, demonstrating its competence 
in capturing the complex patterns underlying social 
cohesiveness dynamics. Additionally, GBDT demonstrated 
admirable computing efficiency, providing a helpful edge 
for large-scale and real-time applications.

Although GBDT stood out as a performer, it is crucial 
to recognize the larger context of our research. Alternative 
models with different strengths and weaknesses in terms of 
accuracy and efficiency included Polynomial Regression, 
Random Forest, Support Vector Machine (SVM), and 
Multi-Layer Perceptron (MLP). Specific application needs 
and constraints should guide when selecting the best model.

Overall, the study emphasizes the critical role that 
machine learning plays in tackling complex urban issues 
like social cohesiveness evaluation and draws attention to 
the potential of data-driven insights to guide community 
development projects. As we look to the future, the 
continuous study of cutting-edge machine learning methods 
and their integration with urban planning and governance 
processes holds the possibility of producing more resilient 
and peaceful urban settings.
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