The Uses and Gratifications Theory, Subjective Norm, and Gender in Influencing Students’ Continuance Participation Intention in LinkedIn

Authors

  • Reiza Bani Paftalika Universitas Indonesia Jl. Prof. Sumitro Djojohadikusumo, Kampus Universitas Indonesia Depok, Indonesia 16424
  • Arga Hananto Universitas Indonesia Jl. Prof. Sumitro Djojohadikusumo, Kampus Universitas Indonesia Depok, Indonesia 16424 http://orcid.org/0000-0003-3020-5288

DOI:

https://doi.org/10.21512/bbr.v9i3.4722

Keywords:

Uses and Gratifications Theory (UGT), subjective norm, gender, continuance participation intention

Abstract

This research investigated how subjective norm and motives from Uses and Gratifications Theory (UGT) affected continuance participation intention. In addition, this research examined the role of gender as a moderating variable in the relationship. A moderated regression analysis was conducted on a sample of 246 respondents selected by purposive sampling technique. The result indicates that subjective norm, all uses, and gratifications motives in the model (information seeking, self-discovery, maintaining interpersonal connectivity, social enhancement, and entertainment value) affect continuance participation intention of female students. For male students, information seeking does not significantly affect continuance participation intention. Subjective norm affects male students more strongly than female students. Then, information seeking affects female students more than male students. This research adds more insights into the literature on continuance participation intention, particularly on the role of gender.

Dimensions

Plum Analytics

Author Biographies

Reiza Bani Paftalika, Universitas Indonesia Jl. Prof. Sumitro Djojohadikusumo, Kampus Universitas Indonesia Depok, Indonesia 16424

Undergraduate Program in Management

Arga Hananto, Universitas Indonesia Jl. Prof. Sumitro Djojohadikusumo, Kampus Universitas Indonesia Depok, Indonesia 16424

Department of Management

References

Al-Debei, M. M., Al-Lozi, E., & Papazafeiropoulou, A. (2013). Why people keep coming back to Facebook: Explaining and predicting continuance participation from an extended theory of planned behaviour perspective. Decision Support Systems, 55(1), 43-54. https://doi.org/10.1016/j.dss.2012.12.032

Baek, K., Holton, A., Harp, D., & Yaschur, C. (2011). The links that bind: Uncovering novel motivations for linking on Facebook. Computers in Human Behavior, 27(6), 2243-2248. https://doi.org/10.1016/j.chb.2011.07.003

Chang, C. C., Hung, S. W., Cheng, M. J., & Wu, C. Y. (2015). Exploring the intention to continue using social networking sites: The case of Facebook. Technological Forecasting and Social Change,

(June), 48-56. https://doi.org/10.1016/j.techfore.2014.03.012

Chang, Y. P., & Zhu, D. H. (2012). The role of perceived social capital and flow experience in building users’ continuance intention to social networking sites in China. Computers in Human Behavior, 28(3), 995-1001. https://doi.org/10.1016/j.chb.2012.01.001

Chen, H. T., & Kim, Y. (2013). Problematic use of social network sites: The interactive relationship between gratifications sought and privacy concerns. Cyberpsychology, Behavior, and Social Networking,

(11), 806-812. https://doi.org/10.1089/cyber.2011.0608

Cheung, C. M., Chiu, P. Y., & Lee, M. K. (2011). Online social networks: Why do students use facebook? Computers in Human Behavior, 27(4), 1337-1343. https://doi.org/10.1016/j.chb.2010.07.028

Cheung, C. M., & Lee, M. K. (2010). A theoretical model of intentional social action in online social networks. Decision Support Systems, 49(1), 24-30. https://doi.org/10.1016/j.dss.2009.12.006

Chiu, C. M., Cheng, H. L., Huang, H. Y., & Chen, C. F. (2013). Exploring individuals’ subjective wellbeing and loyalty towards social network sites from the perspective of network externalities:

The Facebook case. International Journal of Information Management, 33(3), 539-552. https://doi.org/10.1016/j.ijinfomgt.2013.01.007

Choi, J. (2016). Why do people use news differently on SNSs? An investigation of the role of motivations, media repertoires, and technology cluster on citizens’ news-related activities. Computers in

Human Behavior, 54(January), 249-256. https://doi.org/10.1016/j.chb.2015.08.006

Cohen, J., Cohen, P., West, S. G, & Aiken, L. S. (2013). Applied multiple regression/correlation analysis for the behavioral sciences. Routledge.

Dağhan, G., & Akkoyunlu, B. (2016). Modeling the continuance usage intention of online learning environments. Computers in Human Behavior, 60(July), 198-211. https://doi.org/10.1016/j.chb.2016.02.066

Dhir, A., Pallesen, S., Torsheim, T., & Andreassen, C. S. (2016). Do age and gender differences exist in selfierelated behaviours? Computers in Human Behavior, 63(October), 549-555. https://doi.org/10.1016/j.chb.2016.05.053

Dholakia, U. M., Bagozzi, R. P., & Pearo, L. K. (2004). A social influence model of consumer participation in network-and small-group-based virtual communities. International Journal of Research in Marketing, 21(3), 241-263. https://doi.org/10.1016/j.ijresmar.2003.12.004

Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50. https://doi.org/10.2307/3151312

Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2014). Multivariate data analysis. Harlow: Pearson Education Limited.

Hajli, N., Shanmugam, M., Powell, P., & Love, P. E. (2015). A study on the continuance participation in on-line communities with social commerce perspective. Technological Forecasting and Social Change,

(July), 232-241. https://doi.org/10.1016/j.techfore.2015.03.014

Hsu, M. H., Tien, S. W., Lin, H. C., & Chang, C. M. (2015). Understanding the roles of cultural differences and socio-economic status in social media continuance intention. Information Technology & People, 28(1), 224-241. https://doi.org/10.1108/ITP-01-2014-0007

Huang, L. Y., Hsieh, Y. J., & Wu, Y. C. J. (2014). Gratifications and social network service usage: The mediating role of online experience. Information & Management, 51(6), 774-782. https://doi.org/10.1016/j.im.2014.05.004

Hwang, Y. (2010). The moderating effects of gender on e-commerce systems adoption factors: An empirical investigation. Computers in Human Behavior, 26(6), 1753-1760. https://doi.org/10.1016/j.chb.2010.07.002

Ifinedo, P. (2016). Applying Uses And Gratifications Theory and social influence processes to understand students’ pervasive adoption of social networking sites: Perspectives from the Americas. International Journal of Information Management, 36(2), 192-206. https://doi.org/10.1016/j.ijinfomgt.2015.11.007

Khan, M. L. (2017). Social media engagement: What motivates user participation and consumption on YouTube? Computers in Human Behavior, 66(January), 236-247. https://doi.org/10.1016/j.chb.2016.09.024

Krasnova, H., Veltri, N. F., Eling, N., & Buxmann, P. (2017). Why men and women continue to use social networking sites: The role of gender differences. The Journal of Strategic Information Systems, 26(4), 261-284. https://doi.org/10.1016/j.jsis.2017.01.004

Krause, A. E., North, A. C., & Heritage, B. (2014). The uses and gratifications of using Facebook music listening applications. Computers in Human Behavior, 39(October), 71-77. https://doi.org/10.1016/j.chb.2014.07.001

Ku, Y. C., Chen, R., & Zhang, H. (2013). Why do users continue using social networking sites? An exploratory study of members in the United States and Taiwan. Information & Management, 50(7),

-581.

Ku, Y. C., Chu, T. H., & Tseng, C. H. (2013). Gratifications for using CMC technologies: A comparison among SNS, IM, and e-mail. Computers in Human Behavior, 29(1), 226-234. https://doi.org/10.1016/j.chb.2012.08.009

LinkedIn. (2016). About LinkedIn. Retrieved from https://press.linkedin.com/about-linkedin

Liu, D., & Baumeister, R. F. (2016). A Social networking online and personality of self-worth: A meta-analysis. Journal of Research in Personality, 64(October), 79-89. https://doi.org/10.1016/j.jrp.2016.06.024

Lu, H. P., & Hsiao, K. L. (2009). Gender differences in reasons for frequent blog posting. Online Information Review, 33(1), 135-156. https://doi.org/10.1108/14684520910944436

Magnuson, M. J., & Dundes, L. (2008). Gender differences in “social portraits” reflected in MySpace profiles. CyberPsychology & Behavior, 11(2), 239-241. https://doi.org/10.1089/cpb.2007.0089

Mirisola, A., & Seta, L. (2016). Pequod: Moderated regression package. Retrieved from https://cran.rproject.org/package=pequod

Mouakket, S. (2015). Factors influencing continuance intention to use social network sites: The Facebook case. Computers in Human Behavior, 53(December), 102-110. https://doi.org/10.1016/j.chb.2015.06.045

Orchard, L. J., Fullwood, C., Galbraith, N., & Morris, N. (2014). Individual differences as predictors of social networking. Journal of Computer-Mediated Communication, 19(3), 388-402. https://doi.

org/10.1111/jcc4.12068

Pai, P., & Arnott, D. C. (2013). User adoption of social networking sites: Eliciting uses and gratifications through a means–end approach. Computers in Human Behavior, 29(3), 1039-1053. https://doi.org/10.1016/j.chb.2012.06.025

Park, N., Kee, K. F., & Valenzuela, S. (2009). Being immersed in social networking environment: Facebook groups, uses and gratifications, and social outcomes. CyberPsychology & Behavior, 12(6), 729-733. https://doi.org/10.1089/cpb.2009.0003

R Development Core Team. (2011). R: A language and environment for statistical computing. Vienna, Austria: The R Foundation for Statistical Computing.

Revelle, W. (2018). Procedures for psychological, psychometric, and personality research. Retrieved from http://www.personality-project.org/r/psychmanual. pdf

Sasson, H., & Mesch, G. (2016). Gender differences in the factors explaining risky behavior online. Journal of Youth and Adolescence, 45(5), 973-985. https://doi.org/10.1007/s10964-016-0465-7

Seidman, G. (2013). Self-presentation and belonging on Facebook: How personality influences social media use and motivations. Personality and Individual Differences, 54(3), 402-407. https://doi.

org/10.1016/j.paid.2012.10.009

Shi, N., Lee, M. K., Cheung, C. M., & Chen, H. (2010). The continuance of online social networks: how to keep people using Facebook? In 43rd Hawaii international conference on System sciences (HICSS) (pp. 1-10).IEEE.

Sin, S. C. J., & Kim, K. S. (2013). International students’ everyday life information seeking: The informational value of social networking sites. Library & Information Science Research, 35(2), 107-116.

https://doi.org/10.1016/j.lisr.2012.11.006

Tabachnick, B. G., & Fidell, L. S. (2013). Using multivariate statistics (6th ed.). Pearson Education.

Teppers, E., Luyckx, K., Klimstra, T. A., & Goossens, L. (2014). Loneliness and Facebook motives in adolescence: A longitudinal inquiry into directionality of effect. Journal of Adolescence, 37(5), 691-699.https://doi.org/10.1016/j.adolescence.2013.11.003

Venkatesh, V., & Morris, M. G. (2000). Why don’t men ever stop to ask for directions? Gender, social influence, and their role in technology acceptance and usage behavior. MIS Quarterly, 24(1), 115-139. https://doi.org/10.2307/3250981

Wang, J. L., Jackson, L. A., Wang, H. Z., & Gaskin, J. (2015). Predicting social networking site (SNS) use: Personality, attitudes, motivation and internet selfefficacy. Personality and Individual Differences, 80(July), 119-124. https://doi.org/10.1016/j.paid.2015.02.016

Zhang, X., Guo, X., Lai, K. H., Guo, F., & Li, C. (2014). Understanding gender differences in m-health adoption: A modified theory of reasoned action model. Telemedicine and E-Health, 20(1), 39-46.https://doi.org/10.1089/tmj.2013.0092

Zhao, K., Stylianou, A. C., & Zheng, Y. (2013). Predicting users’ continuance intention in virtual communities: The dual intention-formation processes. Decision Support Systems, 55(4), 903-910. https://doi.org/10.1016/j.dss.2012.12.026

Downloads

Published

2018-11-30
Abstract 6846  .
PDF downloaded 710  .